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Abstract

A phonetic classification scheme based on a feed forward
recurrent back-propagation neural network working on audio and
visua information is described. The speech signal is processed by an
auditory model producing spectral-like parameters, while the visual
signal is processed by a specialised hardware, called ELITE,
computing lip and jaw kinematics parameters. Some results will be
given for various speaker dependent and independent phonetic
recognition experiments regarding the Italian plosive consonants.
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1. Introduction

Humans make use of various sources of information in order to
recognise and understand speech with high accuracy. Various
studies of human speech perception have demonstrated that visual
information plays an important role in the speech understanding
process (Massaro, 1987). Speaking of "speechreading”, that is the
ability of tracking all facial expressions, "lip-reading" seems to be
one of the most relevant secondary information sources (Dodd &
Campbell, 1987) for understanding the communication message.
Moreover, even if the auditory modality definitely represents the
most important flow of information for speech perception, the visual
channel alows subjects to better understand speech when
background noise strongly corrupts the audio channel (MacLeod &
Summerfield, 1987). In fact, as Mohamadi and Benoit (Mohamadi
& Benoit, 1992) reported, vision becomes essential when the noise
highly degrades acoustic conditions (SAI0dB). Various studies
appeared in the literature showing how humans are able to visually
classify classes of phonemes similarly produced by our articulators
(as for ltalian, refer to Magno Caldognetto et al. 1980). Moreover,
an impressive technological progress has been achieved in the field
of image processing and probably all future personal computers will
be equipped with a new generation of audio/visual sensors. Thus,
the idea of building new automatic speech recognisers able to use
other sources of information than the acoustic signal, such as those
given by our visual channel, is becoming more and more attractive
within the scientific community, as underlined by the great
attendance and success of the recent Workshop on “Speech Reading
by Man and Machine: Models, Systems and Applications” organised
by the NATO Advanced Study Institute (Stork & Henneke, 1995).
The motivation of this work, which is essentially the same of all
other related studies appeared in the past, from the first paper of E.
Petajan (Petajan E., 1984) to the more recent works (Stork et al.
1992, Silsbee & Allen, 1993, Adjoudani & Benoit, 1995), is focused
on the attempt of building a new audio-visual automatic speech
recognition (ASR) systems able of enhancing recognition
performance, mostly in noisy conditions. Differently by most of the
other systems, the system being described in this work, instead of
using a classical acoustic front-end processor, makes use of a well
known joint synchrony/mean rate auditory model (Seneff 1988), in
order to use very robust features in the acoustic domain, as stated by



Jankowski et al. 1995, and still verify the usefulness of visual
information..

2. Experiment

The system being described, whose diagram is illustrated in
Figure 1, makes use of a new system for automatic jaw and lips
movement 3D analysis called ELITE (Ferrigno & Pedotti 1985, E.
Magno Caldognetto et al. 1992, 1993), in conjunction, as already
underlined in the introduction, with an auditory model of speech
processing (Seneff 1988) which has shown great robustness in noisy
condition (Cosi 1992).

The speech signal, acquired in synchrony with the articulatory
data, is prefiltered and sampled a 16 KHz, and a joint
synchrony/mean-rate auditory model of speech processing (Seneff
1988) is applied producing 80 spectral-like parameters at 500 Hz
frame rate. Due to the present complexity of the model, even if a
quas real-time implementation is already feasible (Cosi et a. 1991),
the auditory model is applied off-line. In the experiments being
described, spectral-like parameters and frame rate have been
reduced to 40 and 250 Hz respectively in order to speed up the
system training time. Input stimuli were segmented, in the acoustic
domain, by SLAM, a recently developed semi-automatic
segmentation and labelling tool (Cosi 1993) working on auditory
model parameters.

The visua part of the system has adopted ELITE which isafully
automatic movement anayser for 3D kinematics data acquisition.
This system ensures a high accuracy and minimum discomfort to the
subject. In fact, only small, non obtrusive, passive markers of 2mm
of diameter, readlised by reflective paper, are attached onto the
speaking subject’s face. The subjects are placed in the field of view
of two CCD TV cameras at 1.5 meters from them. These cameras
light up the markers by an infrared stroboscope, not visible in order
to avoid any disturbance to the subject. ELITE is characterised by a
two level architecture. The first level includes an interface to the
environment and a fast processor for shape recognition (FPSR). The
outputs of the TV cameras are sent at a frame rate of 100 Hz to the
FPSR which provides for markers recognition based on a cross-
correlation agorithm implemented in real-time by a pipe-lined
paralel hardware. This agorithm alows the use of the system also
in adverse lighting conditions, being able to discriminate between
markers and reflexes of different shapes athough brighter.



Furthermore, since for each marker several pixels are recognised,
the cross-correlation algorithm alows the computation of the
weighted centre of mass increasing the accuracy of the system up to
0.1mm on 28cm of field of view. The coordinates of the recognised
markers are sent to the second level which is constituted by a
general purpose personal computer. This level provides for 3D
coordinate reconstruction, starting from the 2D perspective
projections, by means of a stereophotogrammetric procedure which
allows a free positioning of the TV cameras. The collinearity
equations (Wolf 1983) are iteratively linearised and solved at least
sguares after the acquisition of a known control object (Borghese et
al.1988). The 3D data coordinates are then used to evaluate the
parameters described hereinafter.

Finally both audio and visual parameters, in a single or joint
fashion, are used to train, by means of the Back Propagation for
Sequences (BPS) algorithm (Gori et al. 1989), an artificial Recurrent
Neural Network (RNN) to classify the input stimuli. Due to the
different audio and visual frame rate, a 1:2.5 linear interpolation was
adopted for visual parameters.
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Figure 1. Block diagram of the bimodal recognition system.



In all the experiments described in the following sections the
input data consist of disyllabic symmetric /'VCV/ nonsense words,
where C=/p,t,k,b,d,g/ and V=/a,i,u/. All the subjects producing the
stimuli were northern Italian university students, aged between 19
and 22, and were paid volunteers. They repeated five times, in
random order, each of the selected nonsense words. The speaker
comfortably sits on a chair, with a microphone in front of him, and
utters the experimental paradigm words, under request of the
operator. As illustrated in Figure 2, three reference points and five
target points on the face of the subjects were considered.
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Figure 2. Position of the reflecting markers and of the reference planes.
Identification numbers are indicated next to their corresponding markers. Marker
dimension in the figure does not correspond to the real dimension (2mm) but is
increased for visualisation purpose.

In particular, the movements of the markers placed on the central
points of the vermilion border of the upper lip (marker 2), and lower
lip (marker 5), together with the movements of the marker placed on
the corners of the mouth (markers 3, 4) were analysed, while the
markers placed on the tip of the nose (marker 1) and on the lobe of
the ears (markers 7, 8) served only as reference points. In fact, in
order to eliminate the effects of the head movement, the opening and



closing gestures of the upper and lower lip movements were
calculated as the distance of the markers 2 and 5 placed on the lips,
from the transversal plane Q depicted in Figure 2 and defined by the
line crossing markers 7 and 8, placed on the ear lobes, and marker
1, placed on the tip of the nose. Similar distances with the frontal
plane A perpendicular to the above one serve as a measure of upper
and lower lip protrusion. A total of 14 values, defined as the
difference between various markers or between markers and
reference planes, plus the correspondent instantaneous velocity
obtained by numerical differentiation, constitute the articulatory
vector which has been used together with the acoustic vector in
order to represent the target stimuli. The articulatory parameters,
also listed in Table 1, were besides the upper and lower lip opening
and closing movements (UL, LL), and the upper and lower lip
protrusion (ULP, LLP), the lip opening height (LOH) calculated as
the distance between markers 2 and 5, the lip opening width (LOW),
calculated as the distance between markers 3 and 4, the jaw opening
(JO), measured as the distance between the markers placed on the
chin and on the tip of the nose, and the corresponding velocities.

code meaning definition
UL upper lip opening and closing movement d(m2,Q)
LL lower lip opening and closing movement d(m5,Q)
ULP upper lip protrusion d(m2,A)
LLP lower lip protrusion d(m5,4)
LOH lip opening height d(m2,m5)
LOW lip opening width d(m3,m4)
JO jaw opening d(m6,Q)
ULv JdUL/ot 0d(m2,Q)/ot
LLv oLL/ot 0d(m5,Q)/0t
ULPv oULP/ot od(m2,A)/ot
LLPv OLLP/ot od(m5,A)/ot
LOHv OLOH/ot 0d(m2,m5)/ot
LOWv oLOW/ot od(m3,m4)/ot
JOv 0JO/ot 0d(m6,Q)/0t

Table 1. Articulatory parameters.
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As an example of the articulatory parameters, Figure 3 shows the

opening and closing movement and the corresponding instantaneous
velocity of the marker 5 placed on the lower lip (LL, LLvV)
associ ated with the sequence /'apa/.
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Figure 3. Time evolution of displacement and velocity of the marker placed on the

lower lip (n.5), associated with the sequence /'apal.

3. Speaker dependent case

For this experiment (Cosi et al. 1994), 2 male and 2 femae

speakers in three different experimental settings were considered:

a) only the audio channel is active;
b) only the visual channel is active;
¢) both audio and visual channel are active.

Moreover a critical noisy condition of OdB signal to noise ratio was
tested. The network architecture which has been considered for the
recognition was afully or partially connected recurrent feed-forward
BP network with dynamic nodes positioned only in the hidden layer.



The learning strategy was based on BPS algorithm and, as illustrated

in Figure 4, only two supervision frames were chosen in order to

speed up the training procedure time. The first one, focused on
articulatory parameters, was positioned in the middle frame of the
target plosive (the ‘closure’ zone), as defined by the auditory-based
SLAM segmentation procedure, while the second, focused on
acoustic parameters, was positioned in the penultimate frame (the
‘burst’ zone). During the testing phase all the frames of the target
consonant were considered but only in the second supervision point,
in other words at the end of the stimulus, the output was analysed.
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Figure 4. Two target points supervision strategy for the sequence /atal. Signal
waveform, ACoustic and ARticulatory representations are illustrated from the
top.

A 20 ms delay, corresponding to 5 frames, was used for the
dynamic neurons belonging to the hidden layer. In the first (a)
condition a 40(input)*14(hidden)*6(output) RNN structure was
considered, while a 14(input)*6(hidden)*6(output) structure was
used in the second (b) condition. In the third (c) condition, when
audio and  visual channel are  both active, a
54[40+14](input)*20[14+6](hidden)*6(output) structure was
adopted. In this case, not all the connections were allowed from the
input and the hidden layer, as in the previous conditions, but only
those concerning the two different modalities which were thus
maintained disjoint. Various parameter reduction schemes and



various network structure aternatives were exploited but those
described above and graphically summarised in Figure 5, represent
the best choice in terms of learning speed and recognition
performance.
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Figure 5. Network structures in the three different experimental settings (see also
text).

Table 2 and 3 summarise the results obtained for the four
speakers respectively for the clean and noisy conditions. In the noisy
case the speech signal was corrupted by a white noise with 0dB S/N
ratio, which is a very hard condition for plosive recognition, even
for a human listener. For each speaker 5 experiments were executed
using 4 repetitions of the input stimuli for learning and one for
testing. Thus the results shown in the Tables 2 and 3 represent the
means of the 5 experiments. Looking at the Tables, it isimmediately
evident that articulatory parameters alone give rise to quite poor
performance in an open test case. On the contrary, in the close case,
when place of articulation (PLA in Table 2) classes were
considered, grouping together bilabial (/p/, /b/), dental (/t/, /d/), and
velar (/k/, /g/) consonants, the classification results significantly
improved (99%). Combining together acoustic (AC) and articul atory



(AR) parameters always improved the recognition rate in the clean
case even if the acoustic information alone was rather satisfactory.
As for the noisy case, the results show, for all the speakers, a
significant improvement using both AC and AR parameters than
using AC parameters alone, allowing the system to obtain similar
performance (96%) to the clean case (98%).

talker AC AR AR(PLA) AC+AR

MA(m) 83 67 100 100
Lim 78 61 97 97
PA() 78 67 98 96
AN@F) 72 72 100 98
mean 78 67 99 98

Table 2. Speaker Dependent correct recognition rate (%) in the clean
condition. AC: acoustic parameters, AR: articulatory
parameters,(PLA): Place of Articulation (see text).

talker AC AC+AR

MA(m) 83 100

LI(m) 78 94
PA(f) 67 95
AN(f) 67 94
mean 74 96

Table 3. Speaker Dependent correct recognition rate (%) in the noisy
condition. AC: acoustic parameters, AR: articulatory parameters.

In order to qualitatively explain the network ability to well
discriminate among the different classes of articulation (99 %), the
influence of input articulatory parameters on the correct outputs was
measured. The data shown in Figure 6 refers to the speaker AN and
were obtained considering the learning set as the test set in order to
have a big number of correct classifications. For each corrected
classified plosive, going backward to the hidden layer, the hidden
nodes which positively activate the correspondent output node were



considered. Successively, going backward to the input layer, the
input nodes which positively activate the just evidenciated hidden
nodes were isolated and a sort of influence measure was computed
for each input node by considering the output values of the nodes
crossed by positive activating links. Various interesting qualitative
deductions can be drawn. In particular it can be observed that a
similar activation pattern represents the same plosive class. For
example, a high influence measure of LOHv (lip opening height
velocity) and also a low influence measure of ULP (upper lip
protrusion) well differentiate bilabial consonants /p/ and /b/ from the
other two classes. Similar plots, obtained for other speakers, show a
similar tendency thus justifying the results illustrated in Table 2.
These observations obviously need further investigation which will
be completed in the future. In particular, a more complete statistical
description of articulatory data will be computed, so as to justify the
hypothesised ability of the chosen RNN to identify the most
valuable and reliable parameters for the PLA class discrimination.

influence

40,00
35,00
30,00
25,00
20,00
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articulatory gz
parameters =

par/out P/ B/ IT/ /D/ /K] 1G/
LOH 0,00 0,00 20,18 31,74 33,58 34,56
LOW 0,13 0,00 9,02 4,46 37,12 36,66
JO 10,95 8,68 7,61 1,01 1,43 1,18
ULP 0,00 0,00 8,86 20,73 22,72 23,54
LLP 16,00 4,77 1,78 1,49 0,13 0,09
UL 3,85 4,14 0,81 0,05 0,05 0,65
LL 9,03 23,92 10,04 6,97 0,00 0,00

LOHvV 29,44 28,48 5,35 3,26 0,00 0,00
LOWv 10,73 10,49 0,00 0,00 0,00 0,00
JOv 0,00 0,00 39,59 29,25 1,56 1,49
ULPv 0,00 0,00 0,06 1,03 1,56 1,00
LLPv 0,00 0,00 0,00 0,00 1,85 0,82
ULv 5,06 2,44 0,00 0,00 0,00 0,00
LLv 15,05 17,08 0,33 0,00 0,00 0,00

Figure 6. Influence measure of input articulatory parameters for the recognition of
plosives relatively to the speaker AN (see text).



4. Speaker independent case

In the Speaker Independent (SI) case 10 male talkers were
considered. In order to increase the statistic relevance of the data,
the same classification experiment was repeated 10 times following
the so-called “jack-knife” technique, where 9 speakers were
considered for learning and 1 testing. For this experiment: both
audio and visual channel were considered, the speech material was
recorded only in a clean condition, and, for a sake of simplicity, the
network architecture and the learning strategy were identical to that
chosen for the SD case, even if a more complex structure could be
better in this situation. In other words, the same
54[40+14](input)*20[14+6](hidden)*6(output) network structure
and the same learning strategy, based again on BPS algorithm with
only two supervision frames, in order to speed up the training
procedure time (see Section 3), were adopted. The results shown in
Table 4 refer to the condition c), previously described, when both
AC and AR parameters were considered as input to the classification
network. These results indicate a rather good 71% correct
classification performance in the “open” case, when all the plosives
were separately considered. In the “close” case, i. e. when "PLace of
Articulation" (PLA in Table 4) classes were considered grouping
together bilabial (/p/, /b/), dental (/t/, 1dl), and velar (/k/, /g/),
as executed in the previous SD experiment (see Table2),
classification results significantly improved up to 77% correct
classification.



talker % correct % correct

PLA

talker 1 84.4 87.8
talker 2 83.3 83.3
talker 3 93.3 93.3
talker 4 64.4 71.1
talker 5 47.8 56.7
talker 6 53.3 64.4
talker 7 75.6 76.7
talker 8 60.0 76.7
talker 9 62.2 71.1
talker 10 86.7 91.1

mean 71.1 77.22

Table 4. Speaker Independent correct recognition rate (%) for the 10
repeated trials (“jack knife” technique). Both AC and AR
parameters were considered. The second column refers to the “open”
case, when all the plosives were separately considered, while the
third one refers to the “close” case, when "PLace of Articulation”
(PLA) classes were considered grouping together bilabial (/p/, /bl/),
dental (/t/, /d/), and velar (/k/, /g/) consonants.

5. Conclusions

As indicated by a direct inspection of Tables 2-3 for the SD
experiment, recognition performance significantly improves when
both audio and visual channels are active. Looking at Tables 4
referring to the SI case, a good generalisation power can be
associated with the chosen RNN given that Sl results were rather
good principally considering the quite difficult task of recognising
plosives using only two supervision points. Given the difficulty to
include a specialised hardware like the one described in this work in
any kind of present commercialised speech recognition system, the
aim of this work was to suggest some articulatory parameters that
can be of interest for recognition purpose and that can be also
obtained by a direct inspection of the dynamic flow of the speaker
image patterns taken by TV cameras synchronously with speech.



References

A. Adjoudani & C. Benoit (1995). Audio-Visua Speech
Recognition Compared Across Two Architectures. Proc. of
Eurospeech-95, 18-21 Sept. 1995, Madrid, Spain, Vol. 2., 1563-
1566.

N.A. Borghese, G. Ferrigno & A. Pedotti (1988). 3D Movement
Detection: a Hierarchical Approach. Proc. of the 1988 International
Conference on Systems, Man and Cybernetics. International
Academic Publisher, 333-336.

P. Cos. (1992). Ear Modelling for Speech Anaysis and
Recognition. In M. Cooke, S. Beet & M. Crawford (Eds.), Visual
Representation of Speech Sgnals. 205-212. John Wiley & Sons.
205-212.

P. Cos, L. Dellana, G.A. Mian & M. Omologo (1991). Auditory
Model Implementation on a DSP32C Board. Proc. GRETS-91. Juan
Les Pins, France. September, 16-20, 1991.

P. Cos (1993). SLAM: Segmentation and Labelling Automatic
Module. Proc. Eurospeech-93. Berlin, Germany. September, 21-23,
1993. 665-668.

P.Cosi, E. Magno Cadognetto, K. Vagges, G.A. Mian, & M.
Contolini (1994). Bimodal Recognition Experiments with Recurrent
Neural Networks. Proc. of IEEE International Joint Conference on
Acoustics Speech and Sgnal Processing, ICASSP-94. Adelaide,
Australia. April 19-22. paper 20.8.

B. Dodd & R. Campbell (1987). Hearing by Eye: The Psychology of
Lip-Reading. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

G. Ferigno & A. Pedotti (1985). ELITE: A Digital Dedicated
Hardware System for Movement Analysis via Real-Time TV Signa
Processing. |[EEE Transactions on Biomedical Engineering. BME-
32:943-950.

M. Gori, Y. Bengio & R. De Mori (1989). BPS: A Learning
Algorithm for Capturing the Dynamical Nature of Speech. Proc.



|IEEE International Joint Conference on Neural Networks, 1JCNN-
89. Washington DC, USA. June 18-22, 1989. 11:417:432.

C.R. Jankowski Jr., H-D. H. Vo & R.P. Lippmann (1995). A
Comparison of Signal Processing Front Ends for Automatic Word
Recognition. IEEE Trans. on Speech and Audio Processing, Vol. 3,
N. 4, July 1995, 286-293

A. MacLeod & Q, Summerfield (1987). Quantifying the
Contribution of Vision to Speech Perception in Noise. British
Journal of Audiology. 21:131-141.

E. Magno Caldognetto, K. Vagges, & F. Ferrero (1980). Un test di
confusione fra le consonanti dell’italiano: primi risultati, Atti del
Seminario “La percezione del linguaggio(Firenze, 17-20
dicembre 1980), Accademia della Crusca 123-179.

E. Magno Caldognetto, K. Vagges, G. Ferrigno, & G. Busa (1992).
Lip Rounding Coarticulation in Italian.Proc. International

Conference on Spoken Language Processing, ICS.P-92. Banff,

Canada. 1992. 1:61-64.

E. Magno Caldognetto, K. Vagges, G. Ferrigno, & C. Zmarich
(1993). Articulatory Dynamics of Lips in Italian /'VpV/ and /'VbV/
SequencesProc. Eurospeech-93. Berlin, Germany. September 21-
23, 1993. 1:409-412.

D.W Massaro (1987). geech Perception by Ear and Eye a
Paradigm for Psychological Inquiry. Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

T. Mohamadi & C. Benoit (1992). Apport de la vision du locuteur a
l'intelligibilité de la parole bruitée en francaiBulletin de la
Communication Parlée 2:31-41.

E.D. Petgjan (1984). Automatic Lipreading to Enhance Speech
Recognition, PhD ThesisUniv. of Illinois at Urbana-Champaign.

S. Seneff (1988). A joint synchrony/mean rate model of auditory
speech processing. Journal of Phoneticsl6:55-76.



P.L. Silsbee & A.C. Allen (1993). Medium-Vocabulary Audio-
Visual Speech Recognition. Proc. NATO AS, New Advances and
Trends in Speech Recognition and Coding. 13-16.

D. G. Stork, G. Wolff & E. Levine (1992). Neural Network
Lipreading System for Improved Speech Recognition, Proc. of IEEE
International Joint Conference on Neural Networks, [JCNN-92.
285-295.

D. G. Stork and M. Henneke (eds.) (1995). Speech Reading by Man

and Machine: Models, Systems and Applications. NATO AS Series,
Series F: Computer and System Sciences, Proceeding of Nato
Advanced Study Institute, August 28- Sep. 8, 1995, Chateau de
Bonas, France, (to be published).

R.P. Wolf (1983).Elements of Photogrammetry. Mc Graw-Hill
Publisher, 1983.



