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Abstract
Voice quality is recognized to play an important role for the
rendering of emotions in verbal communication. In this paper
we explore the effectiveness of a sinusoidal modeling process-
ing framework for voice transformations finalized to the anal-
ysis and synthesis of emotive speech. A set of acoustic cues
is selected to compare the voice quality characteristics of the
speech signals on a voice corpus in which different emotions
are reproduced. The sinusoidal signal processing tool is used
to convert a neutral utterance into emotive utterances. Two dif-
ferent procedures are applied and compared: in the first one,
only the alignment of phoneme duration and of pitch contour
is performed; the second procedure refines the transformations
by using a spectral conversion function. This refinement im-
proves the reproduction of the different voice qualities of the
target emotive utterances. The acoustic cues extracted from the
transformed utterances are compared to the emotive original ut-
terances, and the properties and quality of the transformation
method are discussed.

1. Introduction
The transmission of emotions in speech communication is a
topic that has recently received considerable attention. Auto-
matic speech recognition (ASR) and text-to-speech (TTS) syn-
thesis are examples of popular fields in which the processing
of emotions can have a substantial impact and can improve the
effectiveness and naturalness of the man-machine interaction.
Many of the researches in the field have emphasized the impor-
tance of prosodic features (e.g., speech rate, intensity contour,
F0, F0 range) and the importance of the voice quality in the ren-
dering of different emotions in verbal communication [1, 2, 3].
In TTS technologies, voice processing algorithms for emotional
speech synthesis have been mainly focusing on the control of
phoneme duration and pitch, which are the principal parame-
ters conveying the prosodic information. On the side of voice
quality transformations for speech synthesis, some recent stud-
ies have addressed the exploitation of source models within the
framework of articulatory synthesis to control the characteris-
tics of voice phonation [4, 1].

The aim of this paper is to explore the effectiveness of a si-
nusoidal modeling processing framework for voice transforma-
tions finalized to the analysis and synthesis of emotive speech.
In the field of TTS, the sinusoidal modeling approach is appre-
ciated for providing a flexible signal representation that can be
used to implement many signal processing tasks, such pitch-

and time-scale modification, with good quality results [5]. Re-
cently, even more sophisticated transformations have been pro-
posed, such as transformation of spectral features for speaker
conversion [6, 7, 8]. This last approach is used in the present
paper to evaluate the effectiveness of the sinusoidal based voice
conversion approach when used to reproduce the voice quality
differences that characterize different emotions.

The paper is organized as follows. In Section 2 the voice
material is introduced and the principal acoustic cues consid-
ered are described. Results on the discriminant ability of cues
are also reported. In Section 3 we define a signal processing
framework, based on a sinusoidal representation, for transform-
ing the prosodic and voice quality characteristics of speech. The
framework is evaluated on a set of examples from the database
and the characteristics and limitations of the method are dis-
cussed.

2. Voice Material
A male University student, who speaks a northern regional Ital-
ian and with recitation skills, pronounced two phonological
structures ’VCV, corresponding to two feminine proper names:
"Aba" /’aba/ and "Ava" /’ava/, simulating, on the basis of ap-
propriate scenarios, six emotional states: anger (A), joy (J), fear
(F), sadness (SA), disgust (D) and surprise (SU), apart from the
neutral one (N), corresponding to a declarative sentence. This
14 words set was repeated many times in random order. For
each series of recordings the rest position has been recorded
as well. In the same session we collect the articulatory data
with an optotracking 3D movement analyzer system (ELITE),
which allows a synchronous recording of the acoustic signal.
This system ensures high accuracy (100 Hz sampling rate, max-
imal error of 0.1 mm for a 28x28x28 cm cube) and minimum
discomfort to the subject because it tracks the infrared light re-
flected by small (2 mm diameter), passive markers glued on ex-
ternal lips contour and on the face. The data collected have been
used to analyse the complex interactions between the articula-
tory movements, due to the phonetic-phonological constraints,
and the face configurations, due to the emotions [9].

In the following we report a brief description of the voice
material in terms of acoustic cues commonly related to emo-
tions. Table 1 shows the mean values for duration, F0, F0 range,
and intensity of the stressed vowels in both words /’aba/ and
/’ava/. An in-depth statistical analysis (ANOVA) of these and
other acoustic and articulatory parameters, has been performed
for the same voice corpus in a companion study [9].



Anger (A) was characterized by the highest intensity, mid-
range F0, narrow F0 range, and shorter duration than the neutral
(N). If we express in musical terms the anger to neutral F0 ratio,
this is precisely a 7/5 interval (tritone). Both the stressed and
unstressed vowels were characterized by a harsh quality, with
a clear predominance in the stressed vowel. Disgust (D) had
longest duration, mid-range intensity, mid-range F0, narrow F0
range, and the disgust to neutral F0 ratio is approximately a
major second. Stressed and unstressed vowels of D were char-
acterized by a creaky voice quality, slightly more pronounced
in the unstressed vowel. Joy (J) and surprise (SU) both pre-
sented high F0 and wide F0 range only in the stressed vowel,
medium-high intensity, and shorter durations than the neutral
in both stressed and unstressed vowels. The emotive to neutral
F0 musical ratio for these two emotions approximate an aug-
mented octave. These two emotions where the most difficult
to distinguish perceptually. Both presented a "bright"-sounding
quality. A distinctive quality aspect of joy was a breathy voice
onset in the stressed vowel, whereas the surprise had a sharp
onset. Fear (F) presented mid-range duration, highest pitch and
low pitch range, mid-range intensity. The fear to neutral F0
ratio is a major second interval. A breathy voice onset in the
stressed vowel, and a general breathy voice quality, character-
ized this emotion. Sadness (SA) had high F0 and wide F0 range
values, mid-range intensity and duration. No distinctive voice
quality features could be observed, other than an overall "dark"-
sounding quality. A general interesting observation, suggested
by Table 1, is that anger, disgust, fear and sadness present an ev-
ident dissonant interval for what concerns the emotive to neutral
F0 mean ratio.

Table 1: Mean values for duration, F0, F0 range, and intensity
of the stressed vowels in /’aba/ and /’ava/.

Duration (s) F0 (Hz) F0range (Hz) Intensity (dB)

A 0.195 177.744 18.276 76.735
D 0.293 138.993 14.935 72.297
N 0.231 126.428 14.588 70.819
J 0.188 260.999 67.873 74.928
F 0.211 288.737 26.889 70.829
SU 0.179 265.867 89.857 72.527
SA 0.269 209.032 56.582 70.415

2.1. Voice quality indexes and statistical analysis

The speech signal has been manually segmented and analysed
by means of a voice analysis software (PRAAT [10]) and of
Matlab routines. The following set of cues, which are among
the ones that are most commonly found in investigations on
emotive speech, have been selected as voice quality correlates
of emotions [11, 12]:ShimmerandJitter, i.e. the cycle-to-cycle
variations of waveform amplitude and fundamental period re-
spectively; the Harmonic-to-Noise ratio (HNR), defined as the
ratio of the energy of the harmonic part to the energy of the
remaining part of the signal; the Hammarberg Index (HammI),
defined as the difference between the energy maximum in the
0-2000 Hz frequency band and in the 2000-5000 Hz band; the
drop-off of spectral energy above 1000 Hz (Do1000), computed
as the gradient of the least squares approximation of the spec-
tral slope above 1000 Hz; the relative amount of energy in the
high- (above 1000 Hz) versus the low-frequency range (up to
1000 Hz) of the voiced spectrum (Pe1000); a spectral flatness
measure (SFM), computed as the ratio of the geometric to the

arithmetic mean of the spectral energy distribution.
The acoustic cues were computed in the stressed and un-

stressed vowel segments for each recording. Moreover, a group
average of the cues for each emotion was computed. The stan-
dardized difference to the neutral for each acoustic cue is re-
ported for the stressed vowel and the unstressed vowel in /’aba/
(Fig. 1) and /’ava/ (Fig. 2). The cue values are grouped in
the plots so to define an acoustic profile for each emotion. The
cue profiles for the stressed and unstressed vowel are charac-
terized by significant differences in the values for the different
emotions.

A few comments are worth noticing for some remarkable
cases: the highShimmervalue for anger (A) reflects the harsh
nature of the voice during a relevant portion of the vowel /’a/.
From an acoustic point of view, a short-time frequency analy-
sis reveals the presence of a subharmonic component in the mid
range of the spectrum, which produces a fast amplitude modu-
lation in the time-domain. Disgust (D) presents an almost flat
pattern in the stressed vowel, whereas it noticeably differs in
Shimmer, Jitter, andSFM in the unstressed vowel, in agree-
ment with its emphasized creaky voice quality. Jot (J) and sur-
prise (SU) present the patterns with more similarities, especially
in the unstressed vowel where they differ appreciably only for
the SFM parameter. Actually joy and surprise were the most
difficult to distinguish one from the other also by informal per-
ceptual listening. In fear (F) the low values ofPe1000is due
to the extremely high pitch, which is also kept stable during the
vowel, as opposed to what happens for joy (J) and sadness (S),
in which the pitch ranges from very low to very high values,
affecting the average.

A linear discriminant analysis was performed on the voice
data set. The percentage of correct classification by the Jack-
knifed procedure for the stressed and unstressed vowel attained
respectively 60% and 65% (the classification matrices are re-
ported in Tables 2 and 3).
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Figure 1: Patterns of audio cues for the different emotions
(stressed vowel segment in the words / ’aba/ and / ’ava/).

Table 2: Jackknifed classification matrix for the stressed vowels

A D N J F SU SA % correct

A 11 0 0 3 0 0 0 79
D 0 7 3 1 0 0 3 50
N 0 4 12 0 0 0 6 55
J 0 3 0 14 2 3 0 64
F 0 1 0 0 13 0 0 93

SU 0 4 0 5 4 9 0 41
SA 0 2 5 0 0 0 7 50

Total 11 21 23 19 12 16 18 60

From the classification matrix it is evident that the best
recognition performance is attained for fear, anger and joy. The
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Figure 2: Patterns of audio cues for the different emotions (un-
stressed vowel segments in / ’aba/ and / ’ava/).

Table 3: Jackknifed classification matrix for the unstressed
vowel

A D N J F SU SA % correct

A 10 0 0 1 1 1 0 77
D 2 8 3 0 0 0 1 57
N 0 0 14 1 0 1 6 64
J 0 1 0 16 1 4 0 73
F 0 0 0 0 11 3 0 79

SU 1 0 2 4 3 11 1 50
SA 0 0 2 2 0 1 9 64

Total 13 9 21 24 16 21 17 65

worst performance is attained for surprise and disgust. From
the observation of the canonical discriminant functions for the
stressed vowel (not reported here) we were able to say that the
first factor was responsible alone for the discrimination of anger
(A) from the other emotions, and had theShimmerandJitter
cues as important components. This is in agreement with Fig.
1 and with the nature of the harsh quality of the stressed vowel.
On the other hand, for the unstressed vowel, none of the factors
were able to discriminate a particular emotion from the other.
Since from Fig. 2 disgust is the only emotion characterized
by high differences inShimmerandJitter, these cues have not
strong relevance in the configuration of the canonical factors,
and the recognition score for disgust is among the worsts.

3. Neutral to emotive utterance mapping
The investigation relies on the well known sinusoidal model of
the signal [13]. The analysis algorithm acts on windowed por-
tions (frames) of the signal, and produces a time-varying rep-
resentation as sum of sinusoids (here calledpartials. Assum-
ing that the number of partialsH is constant for all frames,
for the ith frame the result of the sinusoidal modeling is a set
{(fh(i), ah(i), φh(i)), h = 1, . . . , H} of triples of frequency,
magnitude and phase parameters describing each partial, and a
residual noise component.H is taken sufficiently high to pro-
vide the maximum needed bandwidth, and zero magnitude is as-
signed to the exceeding partials for the spectra with lower band-
width. The re-synthesis of sound relies on the inversion of the
analysis procedure, i.e. on inverse transformation of the sinu-
soidal analysis and on overlap-and-add of time-domain frames.
The residual noise is not considered in the present study, due
to the lack of a reliable noise model. Our experience is that
the inclusion of an inadequately modeled noise introduces un-
desirable artifacts and significantly degrades the result of the
synthesis. Various approaches for the representation of noise
have been used in speech processing [14, 5], and the inclusion
of this component will be the subject of future investigations.
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Figure 3: Scheme of the conversion function design. The pa-
rametersΘj represent the spectral map for the conversion neu-
tral→ Ej (jth emotion).

The sinusoidal representation allows to control some of the
basic speech signal characteristics, such as timing, pitch, and in-
tensity, by simply interpolating analysis frames, and by shifting
or scaling the frequency and magnitude of the partials. When
performing pitch variations for speech signals, it is common
practice to interpolate the shifted frequencies with respect to
the original spectral envelope so that the formants are main-
tained. Unfortunately, no such simple rules are available in
general for reproducing the voice quality transformations im-
plied in the production of different emotions in speech. We thus
rely here on a statistical approach which permits to learn the
spectral transformations from a database of emotive utterances.
The spectral processing method uses a GMM-based mapping
function trained on spectral data from the voice corpus [6]. The
conversion function used has the form

F(~xt) =

M∑
i=1

p(λi|~xt)[~θi], (1)

where~xt is a spectral representation of framet (we use here the
mel-frequency cepstral coefficients, Mfcc), andΘ = [~θ1...~θM ],
is the set of parameters of the mapping function. The term
p(λi|~xt) is the probability that an input acoustic vector~xt be-
longs to the classλi = (αi, ~µi,Σi). The gaussian mixture
is completely specified by the mean vectors, covariance matrix
and mixture weights, and can be represented by

Λ = {αi, ~µi,Σi} i = 1 . . . M (2)

An acoustic modelΛ is computed for the neutral utterance.
Given the sequence ofT training vectorsX = {~x1, ...~xT },
this is achieved by the the ML estimate computed using the
expectation-maximization (EM) algorithm, which maximizes
the GMM likelihoodp(X|Λ) =

∏T
t=1 p(~xt|Λ). The design

of spectral mapping functions requires a preliminary time- and
pitch-alignment between the neutral utterance and the other
emotive utterances. Let say thatJ is the number of emotions,not
considering the neutral. After the time- and pitch- alignment
step is completed, a mapping functionΘj , j = 1, ..., J is com-
puted for each emotion. The conversion function is designed so
as to add to the pitch-shifted spectral envelope from the neutral
at framet and to reproduce the desired spectral envelope from
the time-aligned emotive utterance:

S̃Ts
Ej,t = Fj(~xt) + SPs

N,t, t = 1, ..., T , (3)

whereS̃Ts
Ej,t is the reproduced target spectrum envelope after

time-alignment, andSPs
N,t is the spectrum envelope obtained

from the neutral by pitch shifting. Note that a sequence of
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Figure 4: Scheme of speech transformations to adapt neutral utterance to emotive utterance

frames in a region with approximately same pitch could happen
to be mapped into a sequence of target frames from a region
where the pitch has wide variations. In order to take this into
account, a term∆p, t (the pitch shift factor at framet) can be
included in the design of the conversion function. The training
procedure is schematized for thejth emotion in Fig. 3.

In order to highlight the differences between the process-
ing in which no spectral conversion is performed and the re-
fined processing with spectral conversion, two transformation
schemes were used:
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Figure 5: Result of the transformation neutral→ anger. Up-
per panel: original neutral utterance. Second panel from top:
neutral→ anger (Ts+Ps). Third panel: neutral→ anger
(Ts+Ps+Sm). Lower panel: original anger utterance

1) Time stretching (Ts) and (formant preserving) pitch
shifting (Ps). This transformation process is used to align the
timing and pitch contour of the neutral recording to the timing
and pitch contour of other emotions. After time and pitch trans-
formation of the neutral utterance, a new utterance is obtained
which has the prosodic characteristics of the target emotion, and
the voice quality derived from the neutral utterance (the only
spectral processing being the formant preservation).

2) Spectral modifications (Sm) based on (1) is performed to
align the voice quality characteristics of the modified utterance
to those of the target emotion.

In Fig. 5 the spectrograms of the signals resulting from the
neutral→ anger transformation are shown.

4. Experimental results
The transformations described in the previous section were per-
formed on one repetition of the recordings of the word /’ava/.
The neutral recording was first transformed on a frame-by-
frame basis with the time-stretch and pitch-shift formant pre-
serving procedures, so to match the timing and the pitch pro-
files of each of the other six emotive recordings. The resulting
speech signals were segmented and analysed in order to obtain
for the transformed signals the same set of acoustic cues intro-
duced before. A further set of six transformations was obtained
by computing the spectral transformations based on (1), and the
corresponding set of cues was computed. The standardized dif-
ference to the neutral for each acoustic cue is reported in Fig. 6
(only results concerning the stressed vowel are shown). Com-
paring the cues from the Ts+Ps transformations (line: _ _+) and
those from the Ts+Ps+Sm transformations (line:∗ ) with the
cues from the target samples (line:o), we can see that in gen-
eral Ts+Ps processing fails to reproduce the different acoustic
patterns of the emotions. In most cases, the new values of the
cues lie around the zero, meaning that there is little variation
with respect to the values from the neutral utterance, except
for an increase in theHNR values, since the residual noise is
not modeled in the resynthesis, and a decrease in some of the
cues related to spectral slope, probably due to the rising of the
pitch. Perceptually, the utterances obtained by this transforma-
tion (Ts+Ps) are quite convincing since the sinusoidal process-
ing framework preserves the naturalness of the original signal,
and the comparison in terms of voice quality with the original
target utterances is more effective since only the voice timbre
differences are left.

The inclusion of the spectral processing stage in the proce-
dure (Ts+Ps+Sm) leads to positive effects for a subset of cues,
i.e., HammI, Do1000, Pe1000, SFM, whereas no benefits seem
to be achieved forShimmer, Jitter, andHNR. This, for Shim-
merandJitter, is motivated by the fact that the sinusoidal anal-
ysis/resynthesis framework, being based on a short-time fre-
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Figure 6: Results of speech transformations

quency representation and being not pitch-synchronous, fails to
provide a good model for cycle-to-cycle amplitude and pitch
variations; forHNR, this is due to the lack of a model for the
noisy and other non-harmonic parts of the signal, that are not in-
cluded in the resynthesis (it can be seen in the plots that theHNR
calculated from the transformed signals is in general greater that
theHNRcalculated from the original targets). The benefits for
the remaining cues can be easily explained considering that all
of them represent spectral envelope features and are computed
from the short-time spectrum of the signal. From the percep-
tual point of view, the utterances obtained by this transformation
(Ts+Ps+Sm) are appreciably close to the target ones, the prin-
cipal differences being due to the time resolution limits of the
sinusoidal framework and to the absence of a noise model. In
the reproduced anger (A), the high degree of roughness present
in the original utterance is not perceived (and this is in agree-
ment with the fact thatShimmer, Jitter, andHNRvalues are not
well reproduced for anger, see Fig. 6. As noted before, rough-
ness is characterized in the signal by a relevant noisy component
and by an amplitude modulation which appears in the spectrum
as a sub-harmonic series. The inclusion of such terms would
probably improve the rendering of roughness in anger. In the
reproduced joy (J) and fear (F), both characterized by a breathy
voice quality, the absence of the noisy component is perceived
in the attack portion of the stressed vowel. In the synthesized
surprise (SU), the overall impression is that the transformation
well reproduced the salient prosodic and voice quality charac-
teristics. From informal subjective tests, SU resulted one of the
better reproduced emotions.

5. Conclusions

The sinusoidal signal processing tool has been used to convert
a neutral utterance into emotive utterances. Two different pro-

cedures have been applied and compared: in the first one, only
the alignment of phoneme duration and of pitch contour is per-
formed; the second procedure refines the transformations by us-
ing a spectral conversion function. This refinement improves
the rendering of the different voice qualities peculiar to different
emotions. The acoustic cues extracted from the transformed ut-
terances have been compared to the emotive original utterances,
and the results showed that some of the voice quality character-
istics of the emotions could be reproduced with the proposed
transformation method. Formal listening and recognition tests
on the transformed utterances will be reported in a future work.

We can conclude that the sinusoidal framework for the anal-
ysis and resynthesis of emotive speech offers some desirable
properties. What is missing is a set of ad-hoc modeling refine-
ments which permit to accurately model some peculiarities of
the voiced sounds found in emotive speech. The modeling of
noise components, a well known topic in the field of speech
synthesis, will be included in future investigations. The model-
ing of other peculiar characteristics, such as the cycle-to-cycle
amplitude and pitch variations, or the presence of sub-harmonic
series in the spectra, will be also addressed.
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