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For robots to interact effectively with human users in naturalistic settings
they must be capable of coordinated, timely behaviour in response to the
social context. The ALIZ-E project is focussed on the design of long-term,
adaptive social interaction between robots and child users in real-world set-
tings. In this paper, we report on the iterative approach taken to scientific
and technical development towards this goal: advancing the individual tech-
nical competencies, and integrating these to form an autonomous robotic
system for evaluation “in the wild”. The first evaluation iterations have
shown the potential of this methodology in terms of adaptation of the robot
to the interactant and the influences on engagement. This sets the foundation
for an ongoing research programme that seeks to develop the technologies
for robot companions.
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1. Introduction
The ultimate goal of HRI is to have robots working in real-time with real
people but such aims present enormous challenges, not the least of which
is the necessity to have multiple behaviour systems operating in synchrony.
Humans interact socially, that is, behaving in ways which are contingent
on the actions of those around us. Robots which are to interact effectively
with human users need also to have the capacity to generate coordinated and
timely behaviours predicated on their social surroundings. This presents an
enormous challenge, acting socially means not just the performance of ap-
propriate action sequences but also a substantial degree of flexibility in the
organisation of behaviour to produce timely responses which ‘make sense’
to a user. The technical difficulties associated with coordinating the func-
tioning of multiple action systems to provide coherent, flexible and timely
behaviour are enough to ensure that projects attempting HRI ‘in the wild’
(i.e. real robots interacting with real people in real time) are rare. Rarer still
are those aiming to go beyond the level of moment-by-moment interchange
to achieve long-term social coherence. While the interaction between chil-
dren and robots has been studied (e.g. Draper & Clayton, 1992; Kanda,
Hirano, Eaton, & Ishiguro, 2004; Tanaka, Cicourel, & Movellan, 2007), the
ALIZ-E project1 differs in its ambition as a multi-partner initiative focused
on long-term, adaptive, social interaction between robots and child users
built up through multiple sessions extended over a period of days.

The problem of configuring multiple, complex sub-systems to work ef-
fectively together is substantial and can get in the way of developing novel
technologies for behaviour production. In many cases it makes sense to take
a ‘divide and conquer’ approach developing modular components which are
only integrated into a single system at the end of the development cycle.
Modular design is convenient and sensible, allowing expertise to be focused
on making concurrent progress on several components. However, such an
implementation approach does not provide any insight to the integration
problem which must still be tackled if the outcomes are intended for em-
bodied robots in real-world settings. Conversely a top-down approach to
designing a complex system of interacting components, such as a cognitive
architecture for HRI, leads to its own problems. In such systems the func-
tioning of individual parts is typically constrained to fit with a centralised

1http://www.aliz-e.org
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‘executive’ control strategy and so flexibility of coordination may have to be
sacrificed for robustness of performance. The ALIZ-E project seeks to steer
a course between these extremes by marrying a focus on the implementa-
tion of novel technologies with a rolling program of in situ testing with child
users from the earliest stages of development. Furthermore, the presence of
a clinical application domain ensures that a focus remains on a system which
is capable of delivering definitive benefits to the child interactants. The
project thus benefits from new approaches to solving the problems of cogni-
tive architecture implementation, from individual sub-components through
to methods for the coordination of behavioural output. At the same time,
the necessity to have testable system prototypes available from the earliest
stages of development has led to an early focus on the issues associated with
integration.

The objectives of ALIZ-E are long-term, adaptive social interaction with
child users in a hospital setting, our test population being 8-11 year-olds
diagnosed with metabolic disorders (diabetes and obesity). The aim of the
project is to develop the science supporting robot companions able to in-
teract with these children whilst they are in-patients at the hospital, acting
as ‘friends’ and mentors to improve the children’s experience of a hospi-
tal stay, support well-being and aid their learning about the management of
their health condition. Motivation for this approach comes from two quite
diverse sources. Firstly, previous research has demonstrated the efficacy of
animal companions in supporting positive health outcomes for hospital in-
patients (Fine, 2010). However such schemes are expensive and issues such
as hygiene are not easy to overcome. Potentially, robots can be an alterna-
tive source of the welfare benefits provided by animal therapy and, beyond
that, offer social, emotional and educational resources for hospital staff to
use in patient care. The second motivation is a general willingness of chil-
dren to engage with robots and treat them as social agents (Breazeal, 2003;
Salter, Werry, & Michaud, 2008). ALIZ-E aims to use this imaginative ca-
pacity as a means to bootstrap social engagement providing a platform for
richer, temporally extended Child-Robot Interaction (CRI).

In order to evaluate the HRI aspects involved, a programme of in situ hos-
pital based testing has been designed around a set of activities and games
fitted to the robot’s role in supporting users learning about, and managing,
their medical condition. These are a quiz, a maths game, an imitation game,
a collaborative menu selection task (the ‘SandTray’), and a dance game,
which form the basis of the robot’s interaction with each user (e.g. figure
1). The quiz serves as a non-physical interaction, where the child and robot
use language as the primary interaction channel. The maths game is simi-
larly verbal-interaction oriented, though the focus in this activity is adapt-
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ing the game to suit the child’s performance in order to maximise learn-
ing outcomes. The imitation and dance game are more physically oriented,
and look into how children can be engaged in game play led by the robot.
Finally, the SandTray activity serves as a way for the children to explore
dietary requirements relevant for their medical condition, jointly with the
robot. In each of these cases, there is an emphasis not just on task com-
pletion, but on the social interactions that may arise while the task is being
executed: these activities thus provide contexts for potential social interac-
tions between the children and a robot. Additionally, they provide relatively
constrained application contexts which facilitate the development, testing
and deployment of the various aspects of the technical system (section 2).

Figure 1. Young users with a robot engaging in a quiz game (left), an imitation game (centre) and a
dance game (right).

It is in this respect that the development of technologies capable of sus-
taining real-world interactions beyond the scale of minutes to multiple ses-
sions over several days is a central aim of ALIZ-E. Human social behaviour
is predicated on interaction histories enacted at multiple-timescales. Our
responses to others are heavily influenced by our previous experiences in
similar situations and by the unfolding of the current social exchange. To
date, HRI has not been able to fully take into account interaction history
as a means to coordinate and prime behaviour in an embodied cognitive
architecture. As such, ALIZ-E is developing methods to provide such a
temporal embedding by implementing processing substrates to provide an
experience-biased coordination of system information and behaviours.

While the central efforts in ALIZ-E, and the wider field of HRI, are
geared towards autonomous social long-term interaction, it must be ack-
lowledged that there remains a considerable effort necessary to develop the
supporting technologies to a state where such an integrated solution is pos-
sible. The aim of this paper is therefore to describe the developments made
thus far in ALIZ-E in the various technological domains which must under-
lie an integrated system focused on social CRI. Furthermore, given the em-
phasis on iterative development of testable system prototypes from an early
stage in the project, an overview of preliminary results involving integrated
systems are presented, which demonstrate the utility of the approaches taken
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in the challenging application domain.
The remainder of this paper is structured as follows. Firstly a review is

provided of the novel technologies and approaches developed for the ALIZ-
E project, and the manner in which they can be evaluated (sections 2 and 3).
Secondly, initial results are presented from experiments with children both
in a hospital setting2 and elsewhere (sections 4 and 5).

2. Constituent technologies
The technical focus in ALIZ-E is on iteratively developing technologies fun-
damental to various aspects of HRI, and the implementation of integrated
systems to achieve competence in a range of HRI interaction scenarios. In
this section, four such fundamental technologies are explored; each may
be regarded as a cognitive modality, or cross-modality system. For each of
these, the contributions made to the respective fields are identified, and the
means of validation and evaluation in an HRI context described: (1) natural
language competencies; (2) memory structures; (3) user modelling; and (4)
bodily expression and emotion. While in this section these are described
individually, for an integrated system each component must coordinate in-
formation transfer and interact with other - a description of this process may
be found in section 3.

2.1 Natural language interaction

In this section we highlight the most important aspects of the technologies
we are developing for the processing of natural language to support long-
term child-robot interaction. The processing of natural language input and
output in our system follows the classical pipeline model consisting of au-
tomatic speech recognition (ASR), natural language understanding (NLU),
dialogue management (DM), natural language generation (NLG) and text-
to-speech synthesis (TTS). The quiz game forms an ideal basis for develop-
ment and evaluation, given its inherent verbally interactive nature, and its
provision of a naturalistic constraint on the interaction structure (rounds of
question-answer sequences).

2.1.1 Spoken input interpretation (ASR and NLU) Acoustic and linguistic
characteristics of childrens’ speech differ significantly from those of adult
speech. We therefore trained acoustic models for Italian child speech us-
ing speech material from the ChildIt corpus (Gerosa, Giuliani, & Brug-
nara, 2007) and additional recordings made during ALIZ-E field evaluations
which extend these corpus resources.

2Currently experiments have been run at the San Raffaele hospital (Milan, Italy) and the Wilhelmina
Kinderziekenhuis (Wilhelmina children’s hospital, Utrecht, The Netherlands).
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A first ASR experiment was conducted using recordings made during
experiments at the San Raffaele hospital in March-April 2012, from which
we extracted only those speech segments where users pose questions to the
robot in the quiz game. The Open-Source Large Vocabulary Continuous
Speech Recognition (LVCSR) Engine Julius3 was used, with a 4-gram lan-
guage model built with text data from the questions and answer-options in
the quiz database. Results can be seen in Table 1.

Table 1: Results of preliminary ASR test. #Snt is the number of sentences; #Wrd is the number
of words; WCR (Word Correct Rate) is the percentage of words correctly identified by the speech
recognition; “Ins” is the percentage of words entered by speech recognition but not present in the
transcript reference; WER (Word Error Rate) is the sum of words’ substitution, deletion and insertion
percentages.

Expt. ID #Snt #Wrd WCR Ins WER
1 4 22 81.8 40.9 59.1
2 6 82 73.2 35.4 62.2
3 5 40 52.5 15.0 62.5
4 7 63 73.0 1.6 28.6
5 15 114 90.4 7.0 16.7
6 4 49 61.2 12.2 51.0
7 12 107 58.9 1.9 43.0
8 11 84 65.5 10.7 45.2

Total 64 561 70.6 12.5 41.9

The result of speech recognition (71% correct words and 42% WER) is
encouraging. As the children read questions from cue cards, the questions
are known to the robot. This allows the NLU component to identify 56
out of the 64 questions correctly (87.5%) through fuzzy matching of the
recognized content words against the quiz database entries.

For robust recognition of dialogue acts other than quiz questions and
answer options, we use partial parsing with keyword spotting as a fall-
back. Our partial parsing approach is based on chart parsing, together with
a heuristic to select best partial analyses, based on statistical methods to
assess the quality of edges contained in the parsing chart. We use as ba-
sis OpenCCG4, an open source natural language processing library, which
provides parsing and realization services based on Combinatory Categorial
Grammar (CCG) (Steedman, 2000b) with the multimodal extensions de-
scribed in (Baldridge, 2002; Baldridge & Kruijff, 2003).

3The Sphinx3 ASR engine was evaluated, but proved difficult to implement features critical to our application
domain (such as live decoding).

4http://openccg.sourceforge.net/
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2.1.2 Dialogue Management (DM) The task of the DM is to keep track
of the state in which the interaction is, to integrate the interpretations of
the user’s spoken input (or nonverbal actions) w.r.t. this state, and to select
the next communicative action to take. Recent years have seen a boom in
research in spoken dialogue management using probabilistic methods (Roy,
Pineau, & Thrun, 2000; Williams & Young, 2007; Thomson, 2009; Young et
al., 2010) and optimisation of dialogue policies using reinforcement learn-
ing (Frampton & Lemon, 2009). We are contributing to this line of research
by developing our framework for modelling human-robot dialogue under
uncertainty described below.

A human-robot dialogue consists of a finite sequence of verbal units.
Assuming that the robot receives a numerical reward rt for executing ac-
tion at when the conversational environment makes a transition from be-
lief state bt to state bt+1, a dialogue can be expressed as a sequence D =
{b1, a1, r2, b2, a2, r3, ..., bT−1, aT−1, rT , sT}, where T is the final time step.
A Reinforcement Learning (RL) agent uses such sequences to optimise the
robot’s dialogue behaviour. We apply the learning approach developed in
(Cuayáhuitl, 2011), which extends the state representation of Markov Deci-
sion Processes with relational representations and belief states.

We have developed methods for online learning of policies for flexible in-
teraction (Cuayáhuitl & Dethlefs, 2011). Our approach extends the flexibil-
ity of learning dialogue systems in three ways. First, we introduce dynamic
tree-based state representations that can grow (in the order of 104 states)
during the dialogue according to the state variables used in the interaction.
Second, rather than imposing strict hierarchical dialogue control, we allow
users to navigate across the available sub-dialogues. Third, we represent
the dialogue policies using function approximation in order to generalize
the decision-making even for unseen situations. To this end, we use hierar-
chical reinforcement learning algorithms with dynamic states, global state
transitions (Cuayáhuitl & Kruijff-Korbayová, 2012) and linear function ap-
proximation. This combination is our main mechanism to support dynamic
adaptation.

Long-term human-robot conversational interaction requires the robot to
keep track of the exhibited behaviour and history of perceived observations
for each set of conversants. We use our dialogue policy learning framework
described above to infer the agent’s behaviour (or dialogue policy) from
interactions with the environment. For the agent to adapt to newly gained
knowledge of the user on the fly, we investigate the use of probabilistic
modelling and reasoning to incrementally track the beliefs of a given user,
building on memory systems and adaptive user modelling (see sections 2.3
and 2.2, respectively).
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2.1.3 Spoken output production (NLG and TTS) In the next step, the com-
municative action selected by the DM is verbalised and then realised by
speech, possibly accompanied by non-verbal behaviour. The DM deter-
mines the type of dialogue act and the values of a range of information
state variables important for verbalisation selection. The verbalisations are
designed to foster a sense of familiarity to support long-term interaction
based on common ground between interactants, including the use of names,
references to previous encounters, etc. A range of interaction contexts are
covered, such as greetings and introductions, activity-management moves
(e.g., a request to play, a request to switch roles, a request for a user turn,
etc.), asking questions (e.g., engagement in a game or a quiz question), pro-
viding instructions, information and comments on the user’s performance,
in addition to various types of feedback and clarification requests.

We have developed an utterance planner that allows us to describe the
construction of utterance verbalisations in a modular and flexible manner.
The utterance planner engine is a general graph rewriting system. The
rewriting rules have antecedents where basic tests for the presence or ab-
sence of substructures can be combined with boolean operators to complex
match conditions. The consequent, or rather, rewriting part contains addi-
tion and deletion instructions. Variables in the antecedent and consequent
part of a rule make it possible to move existing information, i.e., subgraphs,
into new locations. We currently use a canned-text approach to generation,
where the utterance planning rules define rewriting of subgraphs into nat-
ural language strings and combining of these strings with one another, to
produce the output utterances. Alternatively, the output could be a logical
form that would serve as input to a grammar-based lexical realisation com-
ponent using OpenCCG.

It is well known that (dialogue) system output can be tedious when it
is repetitive. Since this could negatively influence engagement in studies
with real users, we have invested considerable effort to implement a large
range of verbalisation variation. Selection among variants is either random
or controlled by selectional criteria, including contextual parameters (e.g.
is this the first interaction?) and context characteristics (e.g. has this quiz
question already been asked?). To assess the implemented verbalisation
variability, the utterance planner was allowed to generate verbalisations for
all available dialogue acts with a variety of contextual parameter settings.
A sequence of 40,000 iterations produced 59,296 unique utterances, with
a convergence evident (figure 2). Since often occurring dialogue acts have
tens to hundreds of different verbalisations, the users are not being exposed
to repetitive system output.

For speech synthesis we either use the commercial Acapella TTS sys-
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Figure 2. Unique sentence count per iteration of the full rule set in Natural Language Generation.
Variation in the robot’s responses is deemed necesarry to maintain user engagement.

tem available on the Nao robot (Gouaillier et al., 2008), or the open source
MARY TTS platform5 (Schröder & Trouvain, 2003), with the latter allow-
ing more control over prosody and voice quality. An Italian voice was con-
structed using the Mary TTS voice creation toolkit (Schröder, Charfuelan,
Pammi, & Steiner, 2011). We are using the Statistical Parametric Speech
synthesis (Masuko, Tokuda, Kobayashi, & Imai, 1996; Zen, Tokuda, &
Black, 2009) approach given that Hidden Markov Model (HMM)-based
voices are reaching high quality synthetic speech.

A problem which affects modern TTS is the lack of naturalness due to in-
correct or ambiguous prosody of the generated sentence. Using the support
MARY TTS provides for controlling the prosody of HMM-based voices
with symbolic markup (Pammi, 2011) we implemented two prosody mod-
ifications: (a) Prosodic prominence modification (stress): The NLG com-
ponent labels focus words (Steedman, 2000a). The TTS component then
modifies the prosodic realisation by decreasing the speech rate and raising
the pitch contour on the focus words. (b) Emotional prosody modification:
The dialogue manager decides when the system output should be rendered
with (non-neutral) emotional colouring, either “sad” or “happy”. The TTS
component ensures the corresponding realisation by increasing/decreasing
the speech rate and the pitch contour in the happy/sad case, respectively.

2.2 Memory structures for long-term social interaction
In attempting to achieve long-term social interaction, there is a clear neces-
sity for memory to link prior experiences with ongoing and future episodes.
Temporally extended social behaviour also entails the coordination of mul-
tiple cognitive functions (Ros et al., 2011). In addition to performing the
function of explicit semantic information storage (the prime function of

5mary.dfki.de
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existing robotic memory systems), memory may thus also be viewed as a
means to achieve this coordination (Wood, Baxter, & Belpaeme, 2012). In
this perspective, memory enables the storage of the relationship between
multiple cognitive modalities, such that coordination between them may
subsequently be achieved. This novel use of memory within an cognitive
architecture focused on social interaction enables multimodal coordination
to be a fundamental mechanism, integrated with the functioning of each
modality, rather than a higher level capacity (Baxter, Wood, Morse, & Bel-
paeme, 2011).

Typically, robot control architectures (whether for HRI or other appli-
cations) treat memory as a passive storage device for symbolic encodings
of environmental or agent states at a particular time (notionally a type of
episodic memory). The information that is determined to be relevant is re-
called on the basis of contextual cues for use in ongoing behaviour. This
approach has the benefit of providing explicit semantic information from
prior experiences (e.g. the ball I saw yesterday at 2pm was red. . . ), but
requires information from multiple modalities to be encoded using some
common, system-wide ontology, e.g. (Cassimatis, Trafton, Bugajska, &
Schultz, 2004; Hawes & Wyatt, 2010). Additionally, this storage and re-
call of information does not typically influence the future operation of the
different modalities themselves, but rather, only forms an input to current
processing. Recently, however, a novel framework for memory based on
neuropsychological theory has been developed (Baxter, 2010; Wood et al.,
2012). In this view, which is supported by neurophysiological evidence –
e.g. Fuster (1997) and Bar (2007)), memory is regarded as being fundamen-
tally associative and, via ontogenetic processes of construction, as providing
a substrate for activation dynamics that shape subsequent behaviour.

These principles combined with the spreading activation properties of
Interactive Activation and Competition models (McClelland & Rumelhart,
1981; Burton, Bruce, & Johnston, 1990) can be applied to the design of
robot control architectures enabling memory to provide ‘soft’ coordination
between components: as such, there are a number of computational im-
plementations that are consistent with these principles, e.g. (Morse, Gre-
eff, Belpeame, & Cangelosi, 2010; de Greeff, Baxter, Wood, & Belpaeme,
2012). By associating units of information in different modalities (e.g. the
outputs of face recognition processing, dialogue management) as they are
acquired (and thence activated) through the robot’s interaction with an en-
vironment, links are formed which may be reactivated in the future, thus
influencing on-going processing (Baxter et al., 2011; Wood et al., 2012;
Baxter, Cuayahuitl, Wood, Kruijff-Korbayová, & Belpaeme, 2012). This
can occur without requiring information to be translated into a common
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ontology, since the memory is comprised only of encodings of associative
relationships between modality-specific items.

Assessing the functionality and contribution of such a memory system
to social human-robot interaction is problematic in that memory does not in
itself have a direct interface with the environment: it necessarily interacts
with sensory and effector modalities, which in turn provide the means by
which the outputs of memory are manifested. Indeed, this issue is present
regardless of the methodology used to instantiate memory. The evaluation
of such a system for cross-modal coordination therefore requires an inter-
action scenario which meets two requirements: first that there is an oppor-
tunity for the system to demonstrate behaviours that are not merely driven
by a predefined script (thus allowing the influence of prior experience on
ongoing behaviour to be manifested), and second, that the conditions of
the social interaction may be manipulated such that the influence of such
a memory system on behaviour may be observed. An activity that meets
these requirements has been developed which emphasises the facilitation of
a social interaction between a robot and a human interactant by providing a
context and a focus for the encounter, but without explicitly determining the
interaction structure (Baxter, Wood, & Belpaeme, 2012).

Named ‘SandTray’, this scenario provides a collaborative activity in
which a large touchscreen acts as an interaction medium for robot and child.
This setup enables the pair to work collaboratively on activities such as an
icon sorting task without imposing a rigid turn-based interaction format (fig-
ure 2.2). SandTray takes inspiration from the use of sandplay techniques in
child psychotherapy (Lowenfield, 1939), where a sand filled tray and model
characters are used to provide a nondirective context facilitating communi-
cation and enabling the child to explore and express emotions safely (Hale,
2000).

In such a setting robot and child can participate equally in performance
of tasks by manipulating objects displayed on the screen and it is possible to
explore a wider-range of interaction styles without the constraints of a turn-
based game. The robot’s behaviour thus becomes central in building and
maintaining the engagement of the child, aided by the context that the task
provides. The SandTray supports manipulation of both task and interaction
characteristics providing a platform for exploring how soft, memory-based,
coordination and priming can enable a richer repertoire of social behaviour
in the robot and thence a deeper level of user engagement. While full stud-
ies are as yet underway for this activity, pilot experiments have shown that
child users respond positively to the collaborative setting provided by the
SandTray. It is also apparent that the lack of a fixed structure to the interac-
tion provides more scope for flexibility in the robot’s behaviour which also
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Figure 3. The ‘SandTray’ setup: social interaction between robot and child facilitated by a touch-
screen, which provides a collaborative activity in which they can equally participate.

has a positive effect on user engagement.

2.3 User modelling through interaction

In order to support the general goal of long-term social interaction it is im-
portant that the robot adapts its behaviour to each user taking into account
specific semantic task and shared interaction information. In ALIZ-E this
process is achieved through user modelling (and subsequent interactions
with the memory system). The user model comprises three main compo-
nents:
• General data: such as name, gender, age and whether the child has

interacted with the robot before.
• Specific data: related to a particular activity (e.g. a record of perfor-

mance in an activity such as dance or the questions previously asked in the
quiz).
• A decision making system, which reasons about the goals of the activ-

ity and the behaviour of the child. This module combines data from differ-
ent sources and may send suggestions to other components of the integrated
system.

The user model receives inputs from all components of the cognitive
architecture (see section 3) storing data pertaining to a particular user. In-
ferential processing of this data is used to generate inputs to other modules
thus shaping the robot’s behavioural output. User data, for example, may
guide the robot to maintain or change the current activity, to modify its
speech content or to change the emotional expressivity of its behaviour (fig-
ure 4). The reasoning engine also decides on the social role of the robot:

12
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Figure 4. User Model based reasoning engine to determine the appropriate robot behavior strategy.

will the robot engage the child as an ‘educator’ or a peer ‘motivator’. The
role depends on the strategy chosen to achieve the goal.

The role of the user model varies between activities; in the dance game
and quiz scenarios measures of the user’s previous and on-going perfor-
mance (dynamic data) play an important part in shaping the on-going inter-
action. In other contexts static data pertaining to the user’s interaction style
and preferences may be more important. A number of experiments have
been carried out to evaluate the most relevant user characteristics to model
and on which to base user specific adaptations. For largely practical reasons
these experiments have been run independently of the hospital based test-
ing programme using a population of non-clinical participants (see section
4.1).

2.4 Bodily expression of emotion

As an essential aspect of the ALIZ-E project, we investigate how to imple-
ment expressive gestures and behaviours to achieve sustained, meaningful
interaction with child users. Part of this research looks at the generation of
non-verbal expressive elements that are both grounded in the robot’s partic-
ular embodiment, and meaningful to the user.

In support of this goal, we conducted a perceptual study looking at how
Italian children interpret key emotion poses displayed by the Nao robot
(Beck et al., 2011). The aim was to investigate whether results obtained
with adults could be replicated with children. We previously found that
adults were able to interpret body poses displayed by the robot as convey-
ing certain emotions, which is particularly relevant for the Nao robot used
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Figure 5. A Nao robot showing emotions through the use of body postures, these poses are consis-
tently recognised by children and adults; (a) happiness (b) pride and (c) sadness.

in ALIZ-E as it does not have facial articulation and as such can commu-
nicate very limited emotion when not moving its body. We also noted that
changing the robot’s head position affects the expressiveness of the poses
(Beck, Cañamero, & Bard, 2010; Beck, Stevens, Bard, & Cañamero, 2012).
As with adults, it was found that moving the head upwards increased chil-
dren’s identification of emotions such as pride, happiness, and excitement,
whereas moving the head downwards increased the correct identification for
other displays (anger, sadness). Fear, however, was well identified regard-
less of head position.

These results have already been successfully integrated in an automated
expressive system developed for ALIZ-E (Hiolle, Cañamero, Andry, Blan-
chard, & Gaussier, 2010) and used in the various activities to give feedback
to the user regarding the interaction.

The key elements of this expressive motion generation module are de-
scribed below (see also figure 6).
• Motion Execution: This is the single interface used by other compo-

nents.
• Emotional Key Poses: This is a dictionary of poses triggered either

directly by the Motion Execution interface or through the Affect Space in-
terface using valence and arousal as inputs. The list of joints which will be
involved in the display is given by the Body Representation class.
• Perlin Noise Generation: This class generates trajectories for the dif-

ferent joints in order to animate the robot. Perlin noise adds a random rhyth-
mic perturbation to the robot’s pose and creates an illusion of the robot being
alive. The list of joints to which Perlin noise is applied is given by the Body
Representation class: Perlin noise can for example not be applied to the legs
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and feet, as this has a negative impact on the robot’s balance.
• Affect Space: This determines the emotional key pose to be displayed

and the parameters of the Perlin Noise animation in order to express Valence
and Arousal.
• Iconic Gestures Generation: This generates trajectories of predefined

iconic gestures such as head nods, greetings and so on.
• Dance Movements Generation: This generates trajectories of prede-

fined dance movements for the dance game.
• Body Representation: This class handles the joints of the robot and

their use in the generation of movements and expressive displays. Each
joint has several switches in order to control whether they will be part of a
Perlin animation, a key pose, or a movement. This permits a fine control of
expressivity, and also enables mixed emotional displays.

Figure 6. Structure of the Motion Generation system

3. Evaluation Platform and System Integration
The ALIZ-E project makes use of the Nao humanoid robot as a common
development and evaluation platform. Using such a shared platform facili-
tates the exchange of code and the transfer of results, which in turn allows
quick prototyping and the adoption of agile project management. The Nao
is a small humanoid robot, measuring 58cm in height, weighing 4.3kg and
having 25 degrees of freedom. It has a range of sensors and actuators: 2
loudspeakers, 4 microphones, 2 cameras, a gyroscope, accelerometer, and
range sensors (2 IR and 2 sonar). The robot has an embedded computational
core and connects externally via IEEE 802.11g WiFi or Ethernet. The Nao
has a generally friendly, non-threatening appearance which is therefore par-
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ticularly suited for child-robot interaction (Nalin, Bergamini, Giusti, Baroni,
& Sanna, 2011).

The software integration relies on the Urbi framework, a robot-oriented
middleware6. Urbiscript handles the orchestration of behaviours locally on
the robot, but interfaces with software running on remote computers to han-
dle computationally expensive tasks, such as natural language processing
and computer vision, which cannot be completed on-board in real time.
Furthermore, it provides the substrate for event-handling, which within the
context of an integrated system, readily allows environmental stimulus re-
activity, which is of particular importance in the real-time context of HRI.

Above (section 2), we have described a selection of foundational tech-
nologies under development in ALIZ-E which provide the competencies
required of a robot that is to engage in long-term social interaction. Some
components developed in ALIZ-E have not been used in the studies de-
scribed in section 4 and are as such not discussed here, e.g. voice activity
detection (Dekens & Verhelst, 2011), emotion recognition from the user’s
voice (Wang, Verhelst, & Sahli, 2011), machine vision for emotion recogni-
tion from faces (Gonzalez, Sahli, Enescu, & Verhelst, 2011), gesture recog-
nition (Oveneke, Enescu, & Sahli, 2012) and non-linguistic verbal expres-
sions (Read & Belpaeme, 2012).

The integration of components (i.e. the manner and means of their in-
teraction) is an important aspect of development for a system that is to be
used in HRI evaluation studies. Using Urbi as the coordinating middleware,
the developed architecture enables information to be exchanged between
the different modules in an event-based manner (Kruijff-Korbayová et al.,
2011), where the overall system behaviour, including the coordination of the
modules and sub-systems to be used, is achieved through the use of activity-
specific controllers (figure 7). In this way, the technology components may
be reused for multiple interaction contexts, increasing the flexibility of the
architecture as a whole.

4. HRI validation and exploratory experiments
ALIZ-E is currently in its second year of development and so a number
of the technologies required to support extended child-robot interaction are
still in development. The development process is guided by yearly test-
ing cycles with children in the hospital alongside experiments carried out at
other locations (including schools and summer-camps). Testing in the hos-
pital is exclusively focussed on the interaction activities developed specifi-
cally for children with metabolic disorders and the technologies required to
implement those interactions. Additional experiments carried out by project

6Open Source software, available from www.gostai.com/products/urbi.
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Figure 7. Overview schema of ALIZ-E system integration: functional interaction of the various
modules (including both the cognitive modalities and cross-modality systems) is based on the task
context (activities), and on event-based processing, handled in the robotic middleware Urbi.

partners enable evaluation of the methods and approaches to be used in the
development process. This coupling of in-situ testing of child-robot inter-
action activities with patients, backed up by experiments focussed on indi-
vidual aspects of the implementation (see section 2), is a valuable source of
feedback on the efficacy of particular technologies and the overall function-
ing of the system during interaction with child users.

4.1 Adaptation of robot to child

An early experiment focused on robot adaptation to personality traits of the
user, specifically the extent to which introversion/extroversion would affect
the enjoyment of the interaction. Betty et al. (2004) provide an overview
of observational factors for the inference of personality from behaviour
(e.g. duration of eye contact, frequency of eye gaze). Parents and teach-
ers were asked to answer a question assessing the personality of a child,
and the children were given the same question plus the Big Five Question-
naire for Children (BFQ-C), a short, Dutch language, big five personality
questionnaire for children (Muris, Meesters, & Diederen, 2005). Fifteen
participants, aged 10-11, played an imitation game with a ‘introvert’ and
an ‘extravert’ robot (Robben, 2011). The experiment used a Wizard of Oz
(WoZ) paradigm, where the robot is controlled by the experimenter without
the child being aware of this. The extravert robot challenges the child and
moves faster, while the introvert robot makes encouraging and comforting
comments and moves slower. The results indicate that the child-robot inter-
action was very positively evaluated across all conditions to the extent that
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a ceiling effect was observed. There was no significant difference in evalu-
ation between the two different robot ‘personality’ types, showing that the
children were not sensitive to the personality as implemented on the robots.
Indeed, a significant Pearson correlation between how children perceived
the robots (r=0.552; p<0.05) indicates that children assign similar person-
alities to both robots. As a side result, we noticed that it proved difficult to
derive participant personality types as there was no correlation between par-
ent, teacher and self evaluations and observational measures of participant
extroversion/introversion.

A following experiment (Janssen, van der Wal, Neerincx, & Looije,
2011) looked at task adaptation. Here, the WoZ-controlled robot adapted
the difficulty of a mathematical test based either on the child’s performance
or on a standard learning curve in order to test the effects of user specific
task adaptation on intrinsic motivation (Deci & Ryan, 1985). Mathemati-
cal skills, and adding multiple digit numbers, are an important skill to have
for diabetes management and as such we are interested in how to robot can
contribute to teaching mathematics. Intrinsic motivation was measured us-
ing questionnaires and a free-choice-period: after the obligatory interaction
with the robot, the child could choose to carry on with the robot or do an al-
ternative activity, such as playing with a portable game console or reading a
comic. Twenty children aged 9-10 years completed mathematical tasks and
an imitation game in which the robot adapted the difficulty of the task. Each
child interacted with the robot in three separate sessions. The self-report
questionnaires did not show any significant difference between conditions
but the responses to the free-choice item (to carry on playing with the robot
or change activity) showed that children who had played with the robot that
adapted the task on the basis of their performance, chose to spend more time
interacting with the robot. The children played three sessions each. After
the first session the mean interaction time for both conditions in the free-
choice period was similar (around 2.5min). In the second and third session
the mean time for interaction with the robot in the personalised adaptation
condition was 2.1 minutes, compared to 1 min for the standardised adapta-
tion condition. This difference was significant (p<0.05).

These experiments demonstrate the benefits of evaluating user-derived
adaptation factors prior to implementation and of the overall value of adap-
tation to user characteristics. The first experiments showed that the robot is
evaluated very positively, but that implementing personality based adaptive
behaviour does not appear to be the most effective approach. In the second
experiment, interaction times were greater in the second and third sessions
for the personalised adaptive robot than they were with the non-personalised
version, supporting the hypothesis that adaptation to user characteristics is
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an effective aid to engagement.

4.2 From healthy to sick children

To explore the applicability of findings from healthy child users to a clinical
setting we performed additional experiments focussed on a health manage-
ment quiz administered to diabetic (Blanson Henkemans et al., 2012) and
non-diabetic children (van der Zalm, 2011). Pairs of non-diabetic partici-
pants were given a quiz comprising questions on 4 health topics adminis-
tered over two sessions. Participants played a WoZ quiz game with either a
physical robot or an on-screen virtual robot, followed by another session of
the quiz with the other robot. In each session the two players were in com-
petition to achieve the best score but the robot (real and virtual) was config-
ured to perform at a level comparable to that of the child. Ten children (9-10
years old) were tested on their knowledge of health topics prior to playing
two sessions of the quiz game on the same topics. When participants were
retested after the quiz sessions no difference in retained knowledge was
found for the two conditions. However participants were found to have paid
more visual attention to the real robot. There was a significant main effect
of condition on duration of looking towards the physical robot (F(1,7)=87.4,
p<0.001) and on looking towards the virtual agent (F(1,7)=11.97, p<0.02)
with children looking longest at the robot (r=0.94). Furthermore, among the
children who looked more often towards the robot, the difference with the
virtual agent condition was significant (p=0.05). There was also a signifi-
cant main effect of condition on the number of looks directed at the oppo-
nent, (p<0.05, F(1,8)=5.94) again with more looks toward the robot than
the virtual agent (r=0.65).

In a procedure with diabetic children (Blanson Henkemans et al., 2012)
five diabetic 8-12 year-old children played three diabetes-based quiz games
against either an adaptive or a non-adaptive robot. The adaptive robot asked
their name, sport and favourite colour. It referred to this information during
the interaction and quiz. It also asked the child questions about how they
were enjoying the game during play. We measured knowledge about dia-
betes, the duration of the quiz and the subsequent attitude towards the robot
and the quiz. Results showed an increase in diabetes knowledge (p<0.05)
across both conditions with a trend towards greater knowledge increase in
the adaptive robot condition. There was also a trend for participants who had
experienced the adaptive robot to give higher enjoyment ratings than those
who experienced the non-adaptive robot (though not at significant levels).

Taken together these results indicate that physical robots can effectively
engage the attention of young users and that adaptation to user characteris-
tics can be a useful tool in supporting sustained interaction. Of particular
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Figure 8. Examples of questionnaire questions administered to children post interactions: (A) pie
chart describing potential social relationships; (B) 1-from-5 ‘enjoyment’ rating with pictorial descrip-
tion; (C) forced-choice between descriptors. Translated from the original Italian.

interest is the observed trend for interaction with an adaptive robot to lead
to more effective knowledge acquisition. This potential effect is the subject
of on-going research, where we look at which aspects of adaptivity are most
effective to support learning.

4.3 Toward child-robot engagement: perception of the robot

The current round of hospital evaluations, carried out at San Raffaele Hos-
pital, Milan, have examined the robot’s ability to establish and maintain a
social bond with a child user. For this protocol, 19 children aged 7-12 years
(11 males, 8 females) were recruited, and 13 of them completed the full
evaluation cycle (three interactions). Of these 6 are affected by diabetes
type I. Each child was allocated a period of three hours spread over three
different days (sessions) to interact with the robot. The robot was able to
play three games (quiz, imitation and dance), and the child was requested
to select one of these games to be played in each session. As a single game
interaction was shorter than one hour, for the remainder of the time the chil-
dren were allowed to also try the other games. The three sessions with the
robot would allow the children to become used to interacting with it and to
allow time for any intrinsic novelty effect associated with it to diminish.

In all games the robot’s speech generation and and non-verbal behaviour
is autonomous but a Wizard of Oz (WoZ) approach was used to support
speech interpretation. Following each interaction with the robot a battery
of self-report questionnaires were administered assessing, for example, the
child’s mood, enjoyment of the interaction, perception of the robot as a
social actor and feelings about the games played.

In this second ALIZ-E evaluation cycle, some interesting observations
can be made regarding the data obtained. Overall, participants report very
positive reactions to the robot, children describe themselves as feeling
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Figure 9. After each session children were asked to rate the interaction in terms of how close they
perceived their relationship with the robot to be, how relaxed they felt in the interaction and how
exciting they found it.

‘happy’ in its company and finding the interaction entertaining (e.g., fig-
ure 8(B), and see figure 9). These data indicate that participants continue to
be interested by the robot and to enjoy interacting with it even during the
third encounter when any novelty effects are likely to be much reduced. The
majority of children also reported that they would like to interact with the
robot again; an effect which was observed regardless of which of the games
were played. Over the course of the three sessions participants appear to
become more used to interacting with the robot with an increase in the num-
ber of children describing themselves as feeling ‘very relaxed’ (see fig. 9).
This effect is likely to be in part explained by their repeated exposure to the
robot, but may also reflect the development of a social relationship between
the pair. This conjecture is explored in the following paragraphs.

As a means to assess children’s perception of the robot as a social actor
we asked them to make a forced choice of labels to describe their relation-
ship with the robot. Participants are given a pie chart diagram with segments
representing different social relations, the children are asked to mark the
segment which best fits how the robot appears to them and to write down
the reasons for their choice (figure 8(A)).

In the data gathered so far, the majority of children rate the robot as a
close peer with ‘friend’ being the most common descriptor selected, fol-
lowed by ‘brother or sister’ and ‘classmate’ (see figure 9). The labels ‘ac-
quaintance’ and ‘stranger’ were those least often used. Labels were scored
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in descending order of closeness with a maximum score of 8 for parent down
to 1 for stranger. This data suggests that the child has a social bond with the
robot. Interestingly, the labels ‘acquaintance’ and ‘stranger’ were usually
selected by participants who experienced a robot malfunction during their
interaction. Further scrutiny of these findings is required to test the strength
of any correlation between technical malfunctions experienced during the
interaction and subsequent assessments of the robot as an autonomous so-
cial actor.

Participants were also asked to assess their experience of playing with the
robot by making a forced choice between descriptions (figure 8(C)). Again,
the majority of participants chose a label indicating that the interaction was
viewed as being comparable to playing with another child, a finding which
is supported by the data showing that a very high percentage of the children
indicated that they enjoyed talking to the robot and said that they would re-
spond honestly if it asked them an intimate question (which would not be
expected if it were perceived as being inanimate). Participants were also
asked to rate the extent to which they felt the robot understood the games
they played and understood what they were saying to it. Children indicated
that they thought the robot understood them, which is to be expected as
speech interpretation was under WoZ control, however they also rated it as
understanding the game, again supporting the view that participants saw the
robot as an active social participant having agency. In many cases it was
also observed that participants adjusted their own speech output (especially
pauses and turn-taking in speech), and sometimes even gestures, during di-
alogue with the robot such that speech interactions were observed to run
more smoothly the longer they were maintained (Nalin et al., 2012). This
alignment was informally observed, but warrants further study.

5. Discussion and prospects
The R&D and evaluation in ALIZ-E provides useful results emerging from
the cycle of testing at the hospital and in other settings. The various stud-
ies over a period of two years in school and hospital settings with children
between 7 and 10 years of age have shown that children respond best to a
robot which adapts its behaviour to the young user. The robot, as a physi-
cal embodied agent, receives more attention than an on-screen avatar does,
opening promising avenues for education and social interaction.

The challenges of CRI ‘in the wild’ are significant with both technical
and pragmatic issues to be faced. Children are not ‘mini-adults’ and this
fact is very much apparent in the context of CRI. Children bring an imagi-
native investment to encounters with robot agents that is hugely valuable in
the exploration of how we can develop technologies and systems for social
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interaction. Conversely, they have often had exposure to highly sophisti-
cated toys with complex (if rigid) behaviour patterns, thus the interest of
a child is easily lost when the limits of a robot’s responsiveness are dis-
covered. Thus we have come to understand that sometimes less complex
but more robust and flexible behaviours are those which produce the best
results with users.

The central feature of ALIZ-E is a coupling of innovative technology
with embedding in a real-world application domain. Thus the project in-
volves the development of new solutions to a number of significant issues
in social HRI some of which have a particular focus on child users e.g.
novel technologies for parsing child speech and aspects of user modelling
as applied to children. Other technologies are applicable across the range
of social HRI applications such as flexible dialogue strategy management
and associative memory-driven coordination of behaviour. These methods
and solutions are being developed in parallel and continuously integrated
for testing with child users both in a hospital setting and elsewhere. This
rolling program of integrated testing obviously provides invaluable feed-
back on the real-time performance of the system. At the same time, each
interaction session enables us to study the particular characteristics of this
user group, learning more about what a robot needs to do in order to estab-
lish and maintain a social bond with a child.

One fundamental goal of ALIZ-E is to implement behaviour to enable
social CRI i.e. the robot must be able to function as more than simply a
‘toy’ in its interactions with a user. The pair should be able to play together
–and the role of the robot must go beyond that of an object– the robot must
be able to participate, collaborate and initiate in the interaction. Thus we
aim for the robot to take a role similar to that of a peer or companion -
with all the user expectations that this entails. By extension, for the inter-
action to be meaningfully social it must be maintained beyond the scale of
moments so that the robot is able to adapt its behaviour to the needs of a
child over multiple interaction episodes. In the ALIZ-E project to date we
have laid the groundwork for these requirements to be met. The next stage
of development and testing (of which the central developments have been
outlined in this paper) will see the new technologies which have been devel-
oped implemented and evaluated further to establish how far we are able to
go in building robots capable of forming and sustaining social bonds with
children.
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