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Abstract. . Despite the growing attention towards the communication adequacy 
of embodied conversational agents (ECAs), standards for their assessment are 
still missing. This paper reports about a methodology for the evaluation of the 
adequacy of facial displays in the expression of some basic emotional states, 
based on a recognition task. We consider recognition rates and error distribu-
tion, both in absolute terms and with respect to a human model. As to data 
analysis, we propose to resort to standard loglinear techniques and to informa-
tion-theoretic ones. Results from an experiment are presented and the potentials 
of the methodology are discussed.  

1   Introduction 

In the last years there has been a great effort in the development of embodied conver-
sational agents (ECAs) — i.e., artificial agents able to communicate by means of 
nonveRBal behaviour (gestures and facial displays) in addition to voice, and to gen-
erate emotional and conversational behaviour as a function of communicative goals 
and personality [1]. However, despite their growing popularity, standards for ECAs 
assessment are still missing. Some of the reasons for the lack a common evaluation 
framework for ECAs can be found in their variety and complexity. They target a large 
variety of domains and applications (e.g. multimodal human-computer interfaces, 
interactive games, tools for hearing impaired, …), serving many different purposes 
(virtual guides, salesmen or companions, aides to improve the intelligibility of natural 
and synthetic speech, to enhance the visual appearance of an interface, etc.). It seems 
natural that their effectiveness be measured in terms of communication abilities more 
than (or besides) standard usability indexes; but, it is still not clear how this can be 
accomplished, and to which extent this can be done in a task-independent way, to 
achieve generality. On the other hand, it is possible to single out different levels, 
including the appearance of the ECA, its ‘mind model’, the intelligibility of the ges-
tures and emotional displays it produces, etc., which are expected to contribute to the 
ECA’s effectiveness [2].  

In this paper we focus on the evaluation of a specific aspect of the emotional be-
haviour of talking faces, i.e. the adequacy of facial displays in the expression of some 

 



basic emotional states, measuring it through a recognition task. Though being quite a 
low-level (perceptual) assessment, it can provide important insights to developers—
e.g., by allowing them to compare the performances of different faces based on dif-
ferent technologies, or of the same face at different stages of development. In addi-
tion, the recognisability of emotional expressions affects communicative behavior, 
hence its assessment is expected to be an important step towards a more comprehen-
sive evaluation of the communicative abilities of synthetic agents.  

We will start by discussing the evaluation procedure for MPEG4 facial animation 
players suggested by Ahlberg, Pandzic and You [3]. In §3 we attempt to improve the 
methodology, and introduce the details of a recognition experiment we conducted. 
We then discuss the data analysis and some of the results in §4, focusing on correct 
recognitions and on the way errors distribute across conditions. Section 5 tries to take 
stock of the work done, and to highlight interesting directions for future work. 

2   The Linkoping approach 

Ahlberg, et al [3] suggested a benchmark for measuring the subjective quality of a 
face model in terms of how well it can convey emotions (via facial expressions). 
They were interested in investigating how well a given face model can express emo-
tions when controlled by low-level MPEG-4 FAPs (Facial Animation Parameters) 
captured from real persons acting out the emotions. The expressiveness was measured 
by the accuracy rate of human observers recognising the facial expression being 
shown. Subjects were given sequences of videos of human and synthetic faces ex-
pressing the 6 basic emotions of Ekman’s set (fear, anger, surprise, sadness, happi-
ness, disgust) [4]. Stimuli consisting of human faces were constructed by recording 
people acting different emotions through video camera (natural video sequences). 
During the recordings, the 3-D motion of the head, and a subset of 22 MPEG-4 facial 
feature points were tracked through head tracking equipment and IR-reflecting mark-
ers. This allowed the creation of MPEG-4 FAP files, which were then fed into two 
different facial animation engines to produce the synthetic video sequences. 

The hypothesis was that the recognition rate for each synthetic face is better than 
the random case but worse than the human. In addition, the authors wanted to com-
pare synthetic faces. The dispersion matrices containing the frequencies of the given 
judgments for each face were compared to an ideal dispersion matrix (perfect recog-
nition) and a random matrix (random recognition). Absolute and relative scores for 
faces were provided, and the t-test was used to check for statistical significance of 
differences: The results showed significant differences between the models and the 
real (natural), ideal and random case; however, significant differences between the 
two face models were not detected.  

It is an important feature of the proposed methodology that the expressiveness of 
MPEG4 facial animation players is compared (also) to that of the humans who pro-
vided the model: since people make recognition errors when confronted with human 
facial expressions, a data driven approach to face animation is expected to be capable 
of reproducing both the correct and incorrect recognitions of the model.  

 



There are some limitations in the way the study was performed, though. Some are 
related to the reflective dots procedure used to record the data, which is very time- 
and effort-demanding, and requires that several constraints be met for the data to be 
reliable. Problems of this kind yielded some videos of low quality, which had to be 
discarded, producing a different number of video stimuli per each emotion and per 
each human model. Other possible sources of problems are: the choice of laymen as 
acting people, because of the low consistency and uniformity of the resulting expres-
sions; the fact that some video were of different duration, this way introducing an-
other disturbing factor; the resort to collective rather than individual sessions with 
subjects. Finally, the suggested method provides an easy way to compute absolute 
and relative scores. However, some technical details are not clear (one might object 
about the appropriateness of a t-test for testing significant differences between scores; 
it is not clear the reason for using a randomly generated matrix instead of the more 
standard procedure consisting in making hypotheses on the form of the distribution). 
More importantly, the suggested measure is quite a rough one, for it collapses all the 
information of confusion matrices in a single score. In particular, correct recognitions 
and errors cannot be told apart, nor it is possible to speculate about the different rec-
ognisability of the various emotions. Yet, especially for comparison and development 
purposes, it would be important to have finer-grained analyses addressing both di-
mensions — e.g., to understand how close the data-driven method (base on FAPs) 
mimics the human model on each of them.  

3   The Experiment: Objectives and Method 

For our experiment we modified the objective and methodology with respect to that 
described in the previous section. In particular, we attempted to improve the experi-
mental design and the data analysis models, paying specific attention to correct rec-
ognitions and errors. As to data analysis, we exploited standard techniques for the 
analysis of categorical data (generalised linear models, loglinear analysis[9]) and an 
information theoretic approach to error analysis [10].  

3.1   Objectives 

The experiment aimed at evaluating expressiveness of two synthetic faces in two 
different animation conditions; in the first FAP files (FAP condition) recorded from 
actors were played; in the second, FAP files were produced from scripts specified by 
the developer. We will refer to the two conditions as the FAP as the rule-based (RB) 
one, respectively. RB was introduced because many existing talking heads exploit 
this mode of animation, and it seemed important to compare those approached to the 
data-driven one. In the data analysis we considered both the absolute merits of a 
given face*mode-of-animation combination (in terms of recognition rate) and its 
quality relative to a human model. The objective was to assess how much FAP-faces 
adhere to the model, and what kind of biases and idiosyncrasies, if any, the RB mode 

 



could be responsible for. Finally, we aimed at exploring in detail the error distribu-
tions. 

3.2   Method 

We departed from the Ahlberg et al.’s methodology in the following respects: the 
neutral expression was added to the six emotions of the Ekman’s set; another anima-
tion condition, the mentioned RB one, was added; recordings (and FAP files) were 
taken from one professional actor instead of laymen;1 great attention was paid to 
recording conditions, so that we didn’t have to discard any recordings, managing to 
have the same number of stimuli for each emotion and condition.  

We used two synthetic faces (Face 1 and Face2); each was presented to subjects 
and evaluated in two different conditions: the face playing rule-based (RB) emotional 
expressions, and the face playing the FAP files extracted from the actor. This set up 
allowed us to: a) evaluate and compare RB approaches, whereby the specifications 
for expressing emotions are provided by the developer, to data-driven ones, b) pursue 
the task of cross-face comparison, and c) assess possible interactions between faces 
and mode of animation. 

3.2.1   Video stimuli 

Preparation of videos went through three steps: recording of an actor uttering a sen-
tence and expressing different emotional states, production of the related MPEG-4 
FAP (Facial Animation Parameters) files, and animation of the FAPs sequences using 
different synthetic faces.  

The actor (male, 30 years old) was recorded through the Elite system [4], which 
uses two cameras with a frame rate of 100 Hz to capture 28 markers. Two synthetic 
3D face models were used in the study, Face 1 [5] and Face2 [6]. Both faces enforce 
the MPEG-4 Facial Animation (FA) standard. FAPs were normalized according to 
the MPEG-4 FA standard, to make them speaker-independent. The point trajectories 
obtained from the motion tracking systems were converted into FAP streams through 
TRACK [8]. The FAP streams were then used to animate the synthetic faces to pro-
duce the FAP condition videos through screen capture. 

The video camera recordings of the actor were digitalized and edited to be used for 
the Actor condition of the experiment. Finally, the rule based condition consisted in 
recordings obtained by playing the relevant scripts. 

3.2.2   Experimental Design 

A within-subjects design was adopted: subjects were presented with 3 blocks 
(ACTOR, FACE 1 and FACE 2) of 14 video files each, yielding a total of 42 judg-

                                                           
1 The actor was a male, while the faces we used were both female. It would have been interesting to control 

for cross-sex portability of FAP files, but this was not possible at the time the experiment was performed. 
We plan to address the issue in future studies.  

 



ments per participant.2 The animation conditions (RB and FAP) were appropriately 
randomized within the two blocks of synthetic faces. 

As to emotional expressions, the videos covered the 6 emotions from Ekman’s set 
plus ‘neutral’. Each emotional state was expressed by the faces while uttering the 
Italian phonetically rich sentence “Il fabbro lavora con forza usando il martello e la 
tenaglia” (The smith works with strength using the hammer and the pincer). The 
audio was not presented. The task of the subjects was to identify the presented ex-
pressions by choosing from a list of the 7 available emotional states. 

3.2.3   Procedure 

Subjects were of 30 (15 males and 15 females) non-paid volunteers recruited at ITC-
Irst. None was involved in the present project. They were given individual appoint-
ments for the experimental session in the recording lab (a silent room), and were 
individually tested. Before the experimental session they were given written instruc-
tions and went through a short training session to familiarize with the task. The train-
ing session exploited 4 video files for each of the three faces (total number of 12 
stimuli), with different stimuli than those to be used in the experimental session. The 
video files (320x360, AVI file, Indeo-5.10 compression) were presented on the com-
puter screen, through Microsoft Power Point ®. Each video file was presented only 
once. Each block had three different presentation orders, which were randomly cre-
ated and balanced across conditions and participants. The presentation order of the 
three blocks was also balanced across participants. 

The experimental session started immediately after the training session. Partici-
pants were asked to watch at the video files and express their judgement on a paper 
form, choosing from among the 7 available labels for emotional states (corresponding 
to the 7 presented emotional expressions). At the end of the experimental session, 
they given a 4 items questionnaire, aimed at collecting their feelings about the faces. 

4   Results 

4.1   Correct recognitions 

Table 1 reports the recognition rates for each emotion and condition. 

                                                           
2 The ACTOR block consisted of presentations of two series of videos from the same actor, called 

ACTOR1 and ACTOR2. This was done to control consistency of results with respect to the actor. Since 
no differences emerged, in the following our comparisons and discussion will be limited to ACTOR1, 
with the exception of §4.2, where both types of data from the actor are used again. 

 



Table 1. Percentages of correct recognitions for each emotion and condition. 

 ACTOR1 F1-FAP F1-RB F2-FAP F2-RB 
disgust 13% 20% 53% 17% 17% 

happiness 97% 80% 40% 80% 77% 
neutral 70% 70% 60% 53% 67% 

fear 50% 17% 77% 0% 77% 
anger 90% 27% 53% 7% 23% 

surprise 47% 40% 87% 33% 90% 
sadness 17% 7% 97% 7% 97% 

All 55% 37% 67% 28% 64% 
Correct recognitions were analysed by dichotomizing the responses (correct vs. 
wrong) and developing a multinomial logit log-linear model [9], with the correct/ 
wrong responses as the dependent variable, and the faces (ACTOR1, Face1 and 
Face2), the mode of animation (RB and FAP), and the presented emotions as the 
independent variables. A preliminary model selection analysis showed that the full 
model (including the main effects for each independent variable, and all the second, 
and third order interactions) was needed to adequately fit the data. Hence we devel-
oped a full logit model for the data. 

Direct comparisons of the performances of the different faces in the different con-
ditions were accomplished by computing the z-scores of the relevant log odd-ratios 
from the parameters of the logit model. The chosen level of confidence was p<.01, 
and confidence intervals for the z-scores were z<-2.58 and z>2.58.3  

Results from global comparisons (ignoring differences concerning presented emo-
tions) show that ACTOR1 has better recognition rates than both faces in the FAP 
mode. The scores for the comparisons between ACTOR1 and the two faces in the RB 
condition don’t reach significance, though the one for Face1 goes very close to doing 
so, at the chosen level (z-score= 2.48). Finally, both synthetic faces increase their 
recognition rate when going from the FAP- to the RB-condition. Hence, at a global 
level the RB condition is closer to ACTOR1 than the RB one. 

The results of a more fine grained analysis, addressing faces, mode of animation 
and presented emotion, are summarized in Tables 2 through Table 4.  

Table 2. Significant comparisons involving at 
least one synt. face in the RB mode. 

Table 3. Significant comparisons involv-
ing at least one synt. face in the FAP 

mode. 

Anger ACTOR1 > Face1                
ACTOR1 >Face2  

Anger ACTOR1 > Face1                 
ACTOR1 > Face2 

Happiness ACTOR1 > Face1                
Face2 > Face1 

Fear ACTOR1 > Face2 

Disgust Face1 > ACTOR1                 
Face1 > Face2 

  

Surprise Face1 > ACTOR1               
Face2 > ACTOR1 

  

Sadness Face1 > ACTOR1                
Face2 > ACTOR1 

  

                                                           
3 See [9] for details. 

 



Table 2 reports all the significant comparisons in which one (or more) of the synthetic 
face was in the RB mode; all the omitted combinations did not yield significant dif-
ferences. Table 3 reports the significant results for comparisons in which one (or 
more) of the face was in the FAP-mode, and Table 4 informs about comparisons on a 
given face in the two modes of animation (RB vs. FAP).  

Table 4. Significant comparisons for the same face in the two modes. 

Happiness Face1-FAP > Face1-RB 
surprise Face2-RB > Face2-FAP 

Face1-RB > Face1-FAP 
fear Face2-RB > Face2-FAP 

Face1-RB > Face1-FAP 
sadness Face2-RB > Face2-FAP 

Face1-RB > Face1-FAP 

Summarizing the results, we have that: 
• The RB mode improves the recognition rates of both faces of the same amount 

and on the same presented emotions (surprise, fear and sadness), over the FAP 
mode (table 4). The latter benefits only Face 1 on happiness. Hence, the RB con-
dition is superior to the FAP one, as far as RR is concerned.. 

• The FAP condition does not cause much differences across the synthetic faces, 
nor does the RB one, a part from minor differences (Face2 is superior to Face1 
on happiness, while the opposite obtains on disgust; Table 2). 

• With respect to ACTOR1, the two faces in the FAP condition give either identi-
cal or poorer recognition rates (Table 3). This accords with the conclusions from 
the global analysis. 

• With RB, ACTOR1 is still better than Face1 and Face2 on anger, and better than 
Face1 on happiness. The situation reverses in favor of RB for both faces on sur-
prise and sadness (Table 2). So, the global similarity between RB and ACTOR1 
we observed above, concealed important differences that tend to mutually cancel 
at the global level. 

In conclusion, on absolute grounds the RB mode has higher recognition rates than the 
FAP one. With respect to ACTOR1, RB-faces do not globally differ from it, whereas 
ACTOR1 shows a global superiority over the FAP mode.  

When we go into details, however, the picture changes somewhat: the RB mode 
and ACTOR1 diverge on anger, where ACTOR1 outperforms RB-faces, and on sur-
prise and sadness, where the opposite obtains. Now, anger is the only emotion on 
which ACTOR1 is stably superior to all faces in all conditions, suggesting that our 
faces as such are bad at it (or, the actor looks angry). The superiority of the RB mode 
on surprise and sadness, on the other hand, suggests that the scripts of RB mode pro-
duce agents that express these emotions better (at least with respect to our actor).  

Turning to the FAP mode, we should not hasten to conclude that it is ineffective. 
True, on the global tests they were worst than ACTOR1. The detailed analysis, how-
ever, shows that this is basically due to their poor performances on anger and, for 
Face2, on fear. If we discount anger on the same grounds as for the RB mode (the 
actor looks angry), and accept that fear is a real problem for Face2-FAP, in the re-

 



maining conditions the FAP mode turns out to be closer in performances to ACTOR1 
(the model) than the RB one; this accords with our expectations (see Table 3). 

4.2   Distributions of recognition errors 

We turn now to study errors, trying to understand whether and how the way they 
distribute is affected by our independent variables: faces, mode of animation and 
presented emotions. We will not resort to the same techniques of the previous section. 
Log-linear analysis can be easily extended to address the greater number of response 
categories (7 instead of 2) that is now required; however, the limited size of our sam-
ple (30 people) would weaken our conclusions. Moreover, in this section we are in-
terested in finding simple but powerful tools to succinctly characterize errors and 
their distributions, allowing for easy comparisons; loglinear techniques do not di-
rectly provide for them. Thus, we will explore an information-theoretical approach 
[10] that factors out various contributions to the global information/uncertainty dis-
played by confusion matrices, turning some of them into the tools we need. In this 
work we will focus on the number of confusion classes, and on the characterization of 
errors shared across conditions. Other important dimensions (e.g., typical error 
classes) will not be addressed here.4  

Table 5 reports the global confusion matrix, showing how correct responses and 
errors distribute across stimuli (rows) and responses (columns).  

Table 5 . Overall confusion matrix (percentages). 

  Disg. Happ. neuter fear anger surpr. sadn. 
disgust 22% 9% 16% 9% 8% 4% 32%
happiness 4% 78% 8% 1% 4% 3% 3%
neutral 2% 3% 66% 2% 11% 7% 9%
fear 4% 6% 8% 44% 14% 21% 2%
anger 5% 1% 20% 13% 49% 10% 3%
surprise 1% 9% 7% 13% 8% 61% 2%
sadness 7% 2% 18% 14% 4% 10% 44%

An appreciation of how errors distribute can be obtained by considering L, the mean 
entropy of the stimulus sequence that is not accounted for in the response sequence. 
For a given response category, r, L amounts to the (log) of the mean number of 
stimulus categories that cause responses to fall in r. Ideally, each response is induced 
by one and only one stimulus category (the right one), so that L=0. The converse of L 
is G, which informs about the (log) mean number of response categories for each 
stimulus category.5  

                                                           
4 The price to pay to the information theoretic approach is that it does not come equipped with the rich 

inferential apparatus of other techniques. Hence we will not be able to anchor our conclusion to tests of 
statistical significance. 

5 L=Hcm-Hresp
   G=Hcm-Hstim 
where Hstim= entropy of the stimulus sequence, Hrest= entropy of the response sequence, and Hcm= entropy of 
the confusion matrix. 

 



Table 6 reports the results in term of 2L (number of stimulus category per response 
category) and 2G (number of response category for stimulus category). As can be 
seen, the FAP-faces are quite different from the other combinations, having the great-
est figures (more error categories) on both dimensions. We must take these data with 
some care, though, for L and G do not discount the distribution of errors in the confu-
sion matrix, and are sensitive to the error rate; hence, greater error rates might give 
raise to larger L and G, this way biasing comparisons.  

Table 6. Values of 2L and 2G
 

Table 7. Values of dr and ds

 2L 2G   dr ds
ACTOR1 2.61 2.40  ACTOR1 1.82 1.52 
Face2-RB 2.67 2.46  Face2-RB 2.48 1.97 
Face1-RB 2.65 2.48  Face1-RB 2.76 2.27 
Face1-FAP 4.28 3.50  Face1-FAP 3.54 2.57 
Face2-FAP 5.18 3.74  Face2-FAP 4.30 2.74 

A more refined measure of the way responses distribute is provided by the indices ds 
and dr. The former measures the effective mean number of error (confusion) classes 
per stimulus, discounting the error distribution in the sense that stimuli with a low 
number of errors, which are spread across many response categories, contribute little. 
The other index, dr, informs about the mean number of stimulus categories a response 
category collects confusion from. In an ideal situation, both indices should be 0.6  

The results are reported in Table 7. Although the resulting ordering is compatible 
with that of Table 6, discounting the error rate reveals differences that were previ-
ously blurred. The RB faces are now somewhat farther from ACTOR1. Moreover, the 
variation of ds across synthetic faces is quite limited (range: 1.97-2.75) compared to 
the variation for dr (2.48-4.30). We conclude that: a) the RB faces are the closest to 
ACTOR1, as far as the number of error categories is concerned; b) the number of 
confusion categories along the stimulus dimension (ds) is substantially stable across 
synthetic faces and mode of animation; c) the number of confusion categories along 
the response dimension (dr) shows a clear ascending trend, when we move from 
ACTOR1 to RB faces and then to FAP ones. Thence, the real differences between the 
RB-mode and the FAP-mode on errors classes concern the way response categories 
collect confusions (dr), rather than the number of error classes per stimulus category. 

Suppose, now, that we want to know now how much similar is the error distribu-
tion along the stimuli dimension between two face*mode-of-animation combinations, 
sayFace2-FAP and Face2-RB, as a way to capture the contribution of Face2 to errors. 
The idea is that, to a certain extent, the errors that are shared between Face2-FAP and 
Face2-RB reflect Face2’s properties (the way it looks, the underlying animation en-
gine, rendering, etc.), providing us with a measure of the confusions Face2 induces, 
independently from the condition (FAP vs. RB) it is presented in. To this end, we 
resort to indices δs and δr, which are computed on the pooled confusion matrix for 
Face2-FAP and Face2-RB. They yield the effective fraction of errors that fall outside 

                                                           
6  ds=2(G-Hε)/ε

dr=2(L-Hε)/ε

where L and G are as before, Hε is the error entropy of the confusion matrix, and ε is the error rate. 

 



the shared error categories, corrected for the overall differences in the distribution of 
stimuli (δs) and responses (δr). In a way, the lower these figures, the higher is the 
probability that a given error is due to Face2 itself, rather than to the mode of anima-
tion (or on any other intervening conditions).7 Table 8 reports results obtained by 
pooling together: ACTOR1 and ACTOR2 (reported as ACTOR), Face1-FAP and 
Face2-FAP (FAP), Face1-RB and Face2-RB (RB), Face1-RB and Face1-FAP 
(Face1), Face2-RB and Face2-FAP (Face2).8
 

                                                           
7 For reasons of space, we cannot report here the formulae for δs and δr. See [10] for more on this point. 
8 See fn. 2. 

Table 8. Values of δr and δs for the 
various conditions. 

 δr δs
ACTOR 0.12 0.14 
FAP 0.2 0.24 
RB 0.24 0.34 
Face2 0.35 0.57 
Face1 0.39 0.67 

Table 9. Values of δr and δs 
computed with respect to 

ACTOR1. 

  δr δs
Face1-FAP 0.22 0.43 
Face2-FAP 0.30 0.56 
Face1-RB 0.66 0.78 
Face2-RB 0.63 0.79 

 

Neglecting ACTOR, under the proposed interpretation the mode of animation ac-
counts for a greater fraction of the errors than faces do (excluding ACTOR).  

In Table 9 we have pooled the confusion matrices of each face*mode-of-animation 
combination with that of ACTOR1, and then computed δr and δs. The figures indicate 
the amounts of non-shared errors between each combination and ACTOR1, and in-
form us about how similar each combination is to ACTOR1: the lower the fraction of 
errors they do not share, the more similar they are. Face1-FAP is the combination 
with the lowest figures, hence the one sharing the greatest amount of errors with 
ACTOR1, closely followed by Face2-FAP. The two RB-faces are farther away, shar-
ing fewer errors with ACTOR1 

In conclusion, the analysis of errors has shown that: 
• RB-faces disperse errors on fewer confusion categories than FAP-ones, in this 

being closer to Actor (Table 7);  
• the FAP-faces share a greater amount of errors with ACTOR1 than the RB-faces 

(Table 9); 
• in a given face*mode-of-animation combination it is the mode of animation that 

accounts for the greater portion of errors (Table 8). 
We can interpret these results by saying that the mode of animation affects the error 
distribution more than the type of face (FACE1 or FACE2). In detail, the confusion 
categories of the RB-faces don’t overlap much with those of the actor, this way de-
termining a low number of shared errors. That is, the error distribution of the RB 
mode is quite distinct from that of the actor on both the stimulus and the response 
dimension. The FAP-faces, on the other hand, because of their greater number of 
error categories (Table 7), share some of them with the actor, this way explaining the 
higher number of common errors (Table 9). In other words, the great number of 

 



common errors between the FAP faces and the actor is probably a consequence of the 
higher dispersion of error categories in the FAP conditions.  

4.3 Questionnaires 

At the end of the session each participant was asked to answer 4 close ended ques-
tions asking for which face they felt the judgement task was easiest/hardest and which 
among the synthetic faces was the most natural/pleasant. The actor was rated as the 
easiest face to judge (53%), and Face1 got slightly better results than Face2. Concern-
ing pleasantness/naturalness, Face2 was rated higher than Face1 (59% versus 41%). 

5. Conclusions and Future Work 

In this paper we have proposed an approach to the assessment of the identifiability of 
emotional expressions performed by synthetic faces through two different modes of 
animation: the so-called rule-based and the data-driven one. Both absolute and rela-
tive assessments were pursued, the latter by comparing the expressions of two syn-
thetic faces to those performed by an actor. With respect to previous studies, we have 
adopted more refined techniques: a loglinear analysis of the data for the recognition 
rate, and an information-theoretic approach for error analysis. The results indicate 
that, in absolute terms, the RB condition is superior to the data-driven one with both 
faces, as far as recognition rate is concerned. In relation to the human model, how-
ever, the data-driven method matches the model better. With respect to error distribu-
tion, both the RB and the FAP mode seem to differ from the human model, though 
for different reasons. All these results are largely independent of the face used.  

Besides allowing comparisons among different conditions, the proposed approach 
may directly impact on design and development choices. For instance, the fact that no 
major differences are exclusively due to the faces per se might suggest that the state-
of-the-art of the relevant technologies is such that the appearance and other physical 
characteristics of the synthetic faces is presently less crucial than the way information 
about the relevant emotional expression is provided to them. Another possible indica-
tion is that if recognisability is the ultimate goal, then rule-based approaches seems to 
be appropriate: hand-written scripts allow to finely tune expressions till the desired 
results are obtained. On the other hand, if the focus is on ‘naturalness’, then data-
driven methods are a ‘sort of good’ choice, because they produce recognition patterns 
close to those of the human model. However, they are still far from appropriately 
matching the model on error distribution, suggesting that design and development 
effort be focused on this aspect, in particular on reducing the number of error catego-
ries.  

Turning to possible improvements, this study has not attempted to identify error 
categories; rather, we simply measured their numbers and common error fractions. 
However, information about the most common error categories, along both the stimu-
lus and the response dimensions, would be extremely valuable to characterise how the 
face looks like in general. Besides this, there are factors that might affect the recogni-

 



tion task, which have not been addressed here. For instance: a) the sex of the syn-
thetic face and /or of the source for the FAPs: do the two interact? Do they interact 
with the sex of the subjects? b) Attractiveness: synthetic faces are built to be attrac-
tive, whereas (true) human faces aren’t. Has this any effect on our task? Other impor-
tant directions for future investigations involve the relative importance (if any) of the 
upper/lower part of the face in the expression of emotions: How much does recogni-
tion deteriorate (if it does) when emotional expressions are limited to the upper/lower 
part of the face? Finally, the methodology could be improved by extending measure-
ment to reaction times, this way obtaining information on the difficulty of the judg-
ments for the subjects; and by trying to relate subjective evaluations of the faces (as 
in §4.3) to the results of the data analysis. 
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