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Abstract 
The “digits” small-vocabulary task is important for many telephone-based 

applications such as computer-assisted long-distance dialing or credit-card billing, 
requires extremely high accuracy, and focuses research on acoustic-level processing. 

On the other hand, in many other tasks a speaker-independent domain-specific 
vocabulary (such as “collect call”, “calling card”, “operator”, or “help”) needs to be 
recognized. For such tasks, a “general-purpose” (gp) recognizer that is capable of 
recognizing all permissible phoneme strings in a language is required. 

The more recent results obtained by the application of the CSLU Toolkit frame-
based hybrid HMM/ANN architecture on these recognition tasks for the Italian 
language are described. This work is inserted in a project whose aim is to contribute to 
the “Italianization” of the CSLU Toolkit and to support the dissemination of these 
tools and technologies.  

 

1. Introduction 
In our previous work, high-performance recognition of English digits over the 

telephone channel and Italian digits over a microphone channel have been explored 
[1-4]. Various experiments have been carried out regarding the types of features that 
are used as input by the neural-network classifier, the types of context-dependent 
categories that are output by the classifier, and duration and grammar modeling [4]. 
The standard HMM speech-recognition technology and the hybrid HMM/ANN 
systems in use at CSLU have been also compared, and it was found that the latest 
hybrid NN/HMM systems perform better, at least on this domain. 

Digits represent a tractable problem because the vocabulary is small and fixed, yet 
developing and optimizing performance on these recognizers is extremely important, 
since they are often used in spoken dialogue systems. Moreover, while the tasks are 
tractable, they present significant research challenges. On the other hand, a general-
purpose (GP) speaker- and vocabulary-independent recognizer is necessary for rapid 
prototyping of spoken language systems for arbitrary tasks. Moreover the GP 
recognizer enables recognition of arbitrary words or phrases. 
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2. CSLU Toolkit 
The platform for our work has been the CSLU Toolkit [5], which is freely available 

world-wide for research use1, and includes software for signal processing, speech 
recognition, text-to-speech synthesis, facial animation, and dialogue design. The basic 
framework for the Toolkit's hybrid HMM/ANN speech recognition systems is 
illustrated in Figures 1 and 2. The system uses features that represent the spectral 
envelope (warped to emphasize the perceptually-relevant aspects [6, 7]) and its energy 
given a fixed window size. These spectral features are computed at every 10-msec 
frame in the utterance and are input to the neural network for classification.  The 
neural network receives not just the features for a given frame, but a set of features for 
the given frame and a fixed, small number of surrounding frames. This “context 
window” of features is used to provide the network with information about the 
dynamics of the speech signal. At each frame, the neural network classifies the 
features in the context window into phonetic-based categories, estimating the 
probabilities of each category being represented by that set of features. The result of 
the neural network processing is a CxF matrix of probabilities, where C is the number 
of phonetic-based categories, and F is the number of frames in the utterance. 

 

 
Figure 1.  Graphical overview of the recognition process, illustrating recognition of the word 
“two”. 

 The word or words that best match this matrix of probabilities is determined using 
a Viterbi search, given the vocabulary and grammar constraints. The search is usually 
thought of as traversing a state sequence (illustrated in Figure 2 with a simple two-
word vocabulary), where each state represents a phonetic-based category, and there 
are certain probabilities of transitioning from one state to another.  

The major difference between this framework and standard HMM systems is that 
the phonetic likelihoods are estimated using a neural network instead of a mixture of 
gaussians. Using a neural network to do this estimation has the advantage of not 
requiring assumptions about the distribution or independence of the input data, and 
neural networks easily perform discriminative training [8].  Also, neural networks can 
be used to perform recognition much faster than standard HMMs. A second difference 

                                                           
1 The CSLU Toolkit is freely available for non-commercial use and may be downloaded from 
http://cslu.cse.ogi.edu/toolkit. 
 



is in the type of context-dependent units; whereas standard HMMs train on the context 
of the preceding and following phonemes, our system splits each phoneme into states 
that are dependent on the left or right context, or are context independent. 

 

 
Figure 2.  HMM state sequence for a two-word vocabulary. 

3. Experiments 
The present work is focused on the development of a digit-recognition system for 

Italian over telephone channels and of an Italian general-purpose recognizer for 
microphone channels. 

3.1 “Digits” 
3.1.1 Corpus 

Two corpora have been used for training and development of the telephone-channel 
digits recognition system: the FIELD corpus and the PHONE corpus [9], both 
graciously provided by IRST as part of a research agreement. Both corpora had been 
transcribed at the word and phoneme level, with the time locations of each word and 
phoneme determined by an automatic procedure and then manually adjusted.  Our 
intention is to create a digit recognizer that has been trained on these two corpora, and 
then perform final test evaluation on these corpora as well as the CSELT PANDA 
corpus [10]. In particular for the three corpora, Training, Development and Test 
sections were organized as illustrated in Figure 3.  
 

Figure 3. Training, Development and Test sets for FIELD (F), PHONE (P) and PANDA (PA). 
In particular, 721 digit sequences (ds) (6790 digits) in F and 1842 ds (7504 digits) in P were 
used for training.  85 ds (791 digits) in F and 191 ds (791digits) in P were used for 
development. 88 ds (809 digits) in F, 208 ds  (836 digits) in P and 1041 ds  (16247 digits) in PA 
were used for test.  

If acceptable performance can be obtained on the PANDA corpus, then this 
indicates that the recognizer has successfully learned the digits task without being 
“tuned” to the corpora used in training. The FIELD corpus contains telephone 
numbers that were collected as part of a semi-automated collect-call service, and the 
PHONE corpus contains random digits strings obtained from cooperative but naive 
speakers.  The PHONE corpus has a large number of hesitations, breath noise, and 
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other “spontaneous speech phenomena”, and has been divided into high-quality, 
medium-quality, and low-quality sections, depending on the degree of such 
phenomena in each utterance [9].  As the low-quality section contains mostly out-of-
vocabulary words, and as our evaluation was restricted to in-vocabulary words, we did 
not evaluate on the low-quality section of the PHONE corpus.  

 
3.1.2 Feature Extraction 

As for feature extraction, 13 MFCC [7] features (12 cepstral coefficients and 1 
energy parameter) plus their delta values are continuously computed with a 10-msec 
frame rate, as illustrated in the overview of the full procedure in Figure 4. Cepstral-
mean subtraction (CMS) [11] was performed, with the mean computed using all 
frames of data.  

Figure 4. Overview of the full procedure. 

3.1.3 Neural Network Architecture 
The input to the network consisted of the features for the frame to be classified, as 

well as the features for frames at -60, -30, 30 and 60 msec relative to the frame to be 
classified (for a total of 130 input values) (see Figure 4). The neural-network is simply 
a three-layer fully connected feed-forward network. 

  
3.1.4 Neural Network Training 

Neural-network training was done with standard back-propagation on a fully 
connected feed-forward network. The training was adjusted to use a negative penalty 
modification [12]. With this method, the non-uniform distribution of context-
dependent classes, that is dependent on the order of words in the training database, is 
compensated for by flattening the class priors of infrequently occurring classes. This 
compensation allows better modeling for an utterance in which the order of the words 
can not be predicted. Transition probabilities were set to be all equally likely, so that 
no assumptions were made about the a priori likelihood of one category following 
another category. In order to make use of a priori information about phonetic 
durations, and to minimize the insertion of very short words, the search was 
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constrained by specifying minimum duration values for each category. The minimum 
value for a category was computed as the value at the second percentile of all duration 
values. During the search, hypothesized category durations less than the minimum 
value were penalized by a value proportional to the difference between the minimum 
duration and the proposed duration. 

 
3.1.5 Acoustic Units and Categories 

A three-layer neural network, with 130 inputs and 200 nodes in the single hidden 
layer, was trained to estimate, at every 10-msec frame, the probability of 116 context-
dependent phonetic categories. These categories are created by splitting each Acoustic 
Unit (AU), as illustrated in Table 1 and 2, into one, two, or three parts, depending on 
the length of the AU and how much the AU was thought to be influenced by 
coarticulatory effects. AU states were trained for different preceding and following 
phonetic contexts, and some phonetic contexts were grouped together to form a broad-
context grouping. The broad-context groupings were done based on acoustic-phonetic 
knowledge. 

 

Acoustic Units Parts Description 
.pau @eh @br 1 silence 
i e E a O o u 3 vowel 

tcl kcl 1 closure 
t k r* unvoiced plosive 
d 2 voiced plosive 

dz tS 2 affricate 
s v 2 fricative 
n 2 nasal 
r 2 liquid retroflex 
w 2 glide 

Table 1. Acoustic units (SAMPA, except closures) and number of parts to split each unit into for 
the Italian “digits” lexicon recognizer (* r means “right dependent unit”). 

Group Acoustic units in group Description 
$sil .pau,  .garbage @br silence 
$pld d t tcl dental plosive 
$alv dz s alveolar 
$lab v labial 
$pal tS palatal 
$ret r retroflex 
$nas n nasal 
$vel k kcl velar 
$bck u o O w back vowel and glide 
$mid a E mid vowel 
$frn i, e front vowel 

Table 2. Groupings of acoustic units into clusters of similar units, for the Italian digits task. 

A simple grammar [<any> ( <digit> [silence] )+ <any>] allowing any digit 
sequence in any order, with optional silence between digits (see Figure 4), was 
considered. 

 
3.1.6 Training, Evaluation and Test 

In this work, training was done in three stages and, at each stage, evaluation was 
done on a development set of about 800 digits from each corpus.. At first training was 



done on the initial hand-labeled phonetic transcriptions (HL, Hand-Labelled 
training), using binary target values for the neural network. Then on transcriptions 
that are automatically generated from the first stage using binary target values and the 
best HL network (FA, Forced-Alignment training). Finally, starting from the best FA 
network, the forward-backward re-estimation algorithm was used to regenerate the 
targets for the training utterances (FB, Forward-Backward training) [13]. As 
illustrated in Figure 5, like most of the other hybrid systems, the neural network is 
used as a state emission probability estimator and, unlike most of the existing hybrid 
systems, which do not explicitly train the within-phone relative likelihoods, this new 
system trains the within-phone models to probability estimates obtained from the 
forward-backward algorithm, rather than binary targets. In other words this new 
training stage was executed using automatic transcriptions but with probabilistic target 
values obtained from the second stage. The re-estimation was implemented in an 
embedded form, which concatenates the phone models in the input utterance into a 
"big" model and re-estimates the parameters based on the whole input utterance.  

Figure 5. Overview of the hybrid system showing the relation between NN output nodes and the phone 
models. 
 

3.1.7 Results 
The system was evaluated with the FIELD and PHONE development set and tested 

with the FIELD, PHONE and PANDA test set, and results are illustrated in Table 3.  
 

  HL (28) FA (42) FB (21) 
  WA % SA % WA % SA % WA % SA % 

FIELD 99.37 95.29 99.37 95.29 99.49 96.47 Dev 
PHONE 97.09 91.62 97.72 93.19 97.22 92.15 
FIELD   99.75 97.73   

PHONE   98.68 95.19   Test 
PANDA   98.60 84.82   

Table 3. Recognition performance in terms of “Word Accuracy” (WA) and “Sentence 
Accuracy” (SA) for the best Hand-Labelled (HL) network-28, Forced-Alignment (FA) network-
42 and Forward-Backward (FB) network-21. The best network for testing the system was 
choosen as the best FA network (nnet-42) given that FB performance were slightly worse. 

The best network was chosen as the 42nd network after FA training given that it 
gave slightly better results (considering both FIELD and PHONE evaluation sets) 

$lab<aI <aI> aI>$lab 

input nodes 

hidden  nodes 

output nodes 

f<aI>v n<aI>n 



comparing to those obtained after FB training. A word-level accuracy (WA) of 
99.75% and a sentence-level accuracy (SA) of 97.73% were achieved on the FIELD 
test set, while a word-level accuracy of 98.68% and a sentence-level accuracy of 
95.19% were achieved on the PHONE test set. These results are quite better than 
those on the CSLU 30Knumbers telephone-channel continuous English digits task, 
with best known performance of around 98%, and they represent the best results 
obtained so far on these data, as reported by IRST [14] and CSELT [15]. In fact, at the 
word-level, they correspond to 92% and 71% reduction in error compared to the 
performance obtained by IRST on the FIELD (96.8) and PHONE (95.5%) corpus 
respectively [14]. Considering CSELT’s performance, they are instead 90% and 72% 
reduction in error relatively to the FIELD (97.4%) and PHONE (95.2%) corpus 
respectively [15]. The final test on PANDA test set, with the same best FA network 
resulted in word-level accuracy of 98.6% and in sentence-level accuracy of 84.82. At 
the word level, this represents 53% reduction in error compared to the performance 
obtained by IRST on PANDA (97.0%) and 55% increase in error considering 
CSELT’s best performance (99.1%) on the same corpus [10], [15]. However in 
CSELT’s experiment training material was quite incomparable, in terms of quantity 
(8539 “credit card” digit sequences from the same PANDA corpus for training [10]), 
and in term of quality (training material belongs to the same “credit card” domain of 
the test material) with that available for this work. 

 
3.2 “FIELD Digits” 

Finally, we recently received by IRST more data belonging to the FIELD corpus 
and also the original FIELD test-set file list utilized in their experiments whose results 
are reported in [14]. Thus, for a truly fair comparison, a new experiment was 
organized in order to test the system with these new FIELD data. In this case, as 
illustrated in Figure 6, excluding those speech files included in the original FIELD 
test-set file list, ¾ of all remaining FIELD data, were used for HL training and the 
remaining ¼ was used for evaluation in the development stage. PHONE was entirely 
used for HL training too, while the whole PANDA corpus was added at the time in 
which FA training was considered. The results obtained in this experiment are 
illustrated in Table 4. 

Figure 6. Training, Development and Test sets for the ”FIELD digits” experiment. As for 
FIELD, 38% of all the available data (383 digit sequences) was used for training, 13% (127 digit 
sequences) was used for development and 49% (488 digit sequences) was used for test. PHONE 
and PANDA were entirely utilized for training but the last one only for “Forced Alignment”.   

In this case results are worse than those obtained in the previous experiment (see 
Table 3. WA 99.75%, SA 99.73%). This is probably due the fact that the new FIELD 
test-set material (488 digit sequences) is bigger than that utilized in the “digits” case  
(88 digit sequences, see Figure 3). Moreover these new data seems also more 
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degraded in terms of background noise, channel noise or other non-speech 
phenomena. However these values still correspond, at the word-level, to 47% and 
35% reduction in error compared to the performance obtained by IRST (96.8) and  
CSELT (97.4%) respectively. 

 

  HL (34) FA (21) FB (58) 
  WA % SA % WA % SA % WA % SA % 

Dev FIELD 99.72 98.29 99.72 99.15 99.54 97.44 
Test FIELD 98.24 87.89 98.31 89.53 98.07 87.47 

Table 4. Recognition performance in terms of “Word Accuracy” (WA) and “Sentence 
Accuracy” (SA) for the best Hand-Labelled (HL) network-34, Forced-Alignment (FA) network-
21 and Forward-Backward (FB) network-58. The best network for testing the system was 
choosen as the best FA network (nnet-21) given that FB performance were slightly lower then 
FA performance. 

 

3.3 “General Purpose” 
Although the digits task is an important one, in many tasks a speaker-independent 

domain-specific vocabulary (such as “collect call”, “calling card”, “operator”, or 
“help”) needs to be recognized.  For such tasks, a general-purpose recognizer that is 
capable of recognizing all permissible phoneme strings in a language is required. 

 
3.3.1 Corpus 

To train, develop and test such a recognizer, the APASCI [16] corpus from ELRA 
[17] has been considered.  This corpus contains nearly 4000 sentences read by over 
150 speakers, where the sentences have been designed to maximize the number of 
phonemes occurring in different contexts.  The ELRA-provided corpus comes with a 
set of transcriptions at the word and phoneme level thus a recognizer was trained on 
the APASCI corpus with these transcriptions. In particular, 1250 hand-labeled 
sentences were used for training, 105 were considered for the development stage and 
715 for the test phase, as illustrated in Figure 7. 

Figure 7. Training, Development and Test sets for APASCI In particular, 1250 sentences were 
used for training, 105 sentences for development and 715 sentences for test.  

 

3.3.2 Feature Extraction 
3.3.3 Neural Network Architecture 
3.3.4 Neural Network Training 
 
As for Feature Extraction, Neural Network Architecture and Neural Network 
Training, the considerations of section 3.1.2, 3.1.3, 3.1.4, for the digits case, apply in 
the general purpose case. 
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3.3.5 Acoustic Units and Categories 
In perfect analogy with the digits case, a three-layer neural network, with 130 

inputs and 250 nodes in the single hidden layer, was trained to estimate, at every 10-
msec frame, the probability of 545 context-dependent phonetic categories. These 
categories are created by splitting each acoustic unit (AU), as illustrated in Table 5 and 
6, into one, two, or three parts, depending on the length of the AU and how much the 
AU was thought to be influenced by coarticulatory effects. 

 
Acoustic units Parts Description 

.pau 1 silence 
i e E a O o u 3 unstressed vowel 

 ii ee  EE aa OO oo uu 3 stressed vowel 
pcl bcl tcl dcl kcl gcl 1 closure 

p b t d k g r plosive 
ts dz dZ tS 2 affricate 

s z f v S 2 fricative 
m n N 2 nasal 
l r L 2 liquid 
j w 2 glide 

@sch 2 schwa 

Table 5. Acoustic units (SAMPA, except closures) and number of parts to split each unit into, 
for the Italian “general purpose” recognizer (r means “right dependent unit”). 

Similarly to the digits case, AU states were trained for different preceding and 
following phonetic contexts, and some phonetic contexts were grouped together to 
form a broad-context grouping. The broad-context groupings were done based on 
acoustic-phonetic knowledge. 
 

Group Acoustic units in group Description 
$sil .pau  .garbage silence 
$fnt i ii e ee j front 
$mid E EE a aa @sch  mid 
$bck O OO o oo u uu w back 
$lab p b f v m pcl bcl labial 
$alv t d ts dz s z n tcl dcl alveolar 
$pal dZ tS S N L palatal 
$vel k g kcl gcl velar 
$lat l lateral 
$ret r retroflex 

Table 6. Groupings of acoustic units into clusters of similar units, for the Italian “general 
purpose” task. 

3.3.6 Training, Evaluation and Test 
The training data were searched to find all the vectors of each category in the hand-

labeled training section of APASCI and evaluation was done on the corresponding 
development set. Training was done following the same scheme utilized in the digits 
case in which Hand-Labelled training is followed by Forced-Alignment and Forward-
Backward training. 

  



3.3.7 Results 
As of the time of this writing, two of the three stages have been completed: HL- 

and FA-training. As illustrated in Table 7, phoneme-level accuracy of 82.90 and 
80.53% on the APASCI development and test set respectively has been obtained. 

 
 Itr 

# 
Snts 

# 
Wrds 

# 
Sub 
% 

Ins 
% 

Del 
% 

PhnAcc 
% 

dev 24 105 5235 10.41 2.56 4.45 82.90 
test 24 715 36439 11.97 3.24 5.12 80.53 

Table 7. Recognition performance in terms of phone accuracy for the development and test set. 

This level of accuracy is much greater than on a similar English-language corpus 
(with state-of-the-art performance of slightly better than 70%) and it represents the 
best performance obtained so far on this corpus, with no grammar and no phonotactic 
constraints. In fact, the performance obtained so far by IRST on an extended version 
of the same APASCI corpus [16] range, at the phone level, from 71.34% to 79.04%, 
while considering context-independent units (CIUs) and from 75.38 to 76.60 with 
Syllable-type units (SUs). When context-dependent units (CDUs) were considered, 
results were slightly better than ours, ranging from 81.36 to 82.44. However in this 
case, in contrast with our present implementation, phonotactic constraints were 
introduced in order to inhibit the recognition of unit sequences having incompatible 
contexts and this, according to the authors, improved accuracy from 2% to 3% 
depending on the particular unit set. Moreover in this case a very complex and 
sophisticated HMM system, with 16 gaussian mixtures per state and a large number 
(from 337 to 849) of context-dependent states was used in comparison to the rather 
straightforward architecture of the system being described in this work. 

 

4. Conclusions 
In summary, this work yielded a state-of-the-art telephone-channel Italian digit 

recognition system and excellent performance on microphone-channel Italian general-
purpose recognition and further development of these systems will hopefully improve 
results even more. The results obtained on FIELD and PHONE corpora represent the 
best recognition performance obtained so far on these data. On CSELT PANDA 
corpus results were comparable, but slightly worse, with those obtained by CSELT. 
However, CSELT training material was quite incomparable, in terms of quantity 
(8539 “credit card” digit sequences from the same PANDA corpus for training), and 
in term of quality (training material belongs to the same “credit card” domain of the 
test material) with that available for this work. 

The current-best Italian digit and general purpose recognizers were implemented in 
the Toolkit’s dialogue design module and a simple Italian-language demonstration 
program that accepts connected digit string or simple menu orders from a user has 
been created.  These demonstration systems were installed on a laptop machine and 
were successful in informal presentations. 

 

5. Future Research 
In preparation for future research, new software that allows a computer to record 

telephone-channel speech using the CSLU Toolkit to perform its basic functions was 
installed and tested with success. This software allows telephone-based interaction 



with the Toolkit as well as the collection of telephone-channel corpora for training 
new Italian recognition systems.  Moreover a new package was developed and added 
to the Toolkit that will allow exploratory feature sets, which may currently require a 
great deal of computation time, to be easily integrated into the training and testing of 
an HMM/ANN recognizer.  This will allow not only the development of full-scale 
recognition systems using these new features, but will also allow direct comparison of 
different feature sets given the same training procedures and corpora. 
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