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ABSTRACT   This paper describes a set of experiments on
training and search techniques for development of a
neural-network based continuous digits recognizer.  When
the best techniques from these experiments were combined
to train a final recognizer, there was a 56% reduction in
word-level error on the continuous digits recognition task.
The best system had word accuracy of 97.67% on a test set
of the OGI 30K Numbers corpus; this corpus contains
naturally-produced continuous digit strings recorded over
telephone channels.  Experiments investigated the effects
of the feature set, the amount of data used for training, the
type of context-dependent categories to be recognized, the
values for duration limits, and the type of grammar.  The
experiments indicate that the grammar and duration limits
had a greater effect on recognition accuracy than the
output categories, cepstral features, or a doubling of the
amount of training data. In addition, the forward-
backward method of training neural networks was
employed in developing the final network. Key words:
speech recognition, neural networks, digit recognition.

1. Introduction
Despite many improvements over the years in feature
representation and training methods, the performance of
automatic speech recognition systems is still far inferior to
human performance, especially for telephone-channel
speech.  Our current research on improving recognition
performance focuses on the telephone-speech continuous
digits task.  Despite its apparent simplicity, this task is
known to be quite difficult, in large part because statistical
language models can not be employed.

The platform for research and development of our
recognizers is the CSLU Toolkit [1], described in more
detail below. We have developed a set of procedures
within the Toolkit for training recognizers on tasks such as
continuous digit recognition, and a step-by-step tutorial is
available [2].   The recognition systems described in this
paper are frame-based hybrid HMM/ANN recognizers
with context-dependent categories. The method for
training such systems is simple enough that a bright high-
school student can complete the tutorial in a few days.   On
the continuous digits task, the training procedure yields
recognition results that compare favorably to standard

HMM systems [3].  This paper shows how competitive
performance was achieved by optimizing several of the
parameters used in training and searching. Our
experiments focused on the choice of feature set, the
amount of data used for training, the type of context-
dependent categories to be recognized, the values for
duration limits, and the type of grammar1.

2. The CSLU Toolkit

2.1. Toolkit Overview
The CSLU Toolkit is a comprehensive software
environment that integrates a set of speech-related
technologies, including speech recognition, natural-
language parsing, speech synthesis, and facial animation.
The Toolkit has been developed to support speech-related
research and development activities for a wide range of
users and uses, and it features GUI authoring and analysis
tools that enable rapid development of desktop and
telephone-based speech applications.  It is currently used,
among other places, at the Tucker-Maxon Oral School in
Portland, Oregon, to create interactive learning
experiences for both hearing and profoundly deaf children.
The Toolkit is available at no charge for academic use, and
can be downloaded over the Internet [4].  Among other
topics, the Toolkit is designed to enable users to:
• rapidly design spoken language systems for real

applications with easy-to-use authoring tools, even if
the user is unfamiliar with spoken language
technology;

• learn about spoken-dialogue systems as well as the
fundamentals of speech through coursework
incorporated into the tools; and

• perform research on the underlying technologies and
incorporate research advances into working systems
for evaluation in real applications.

                                                
1 Although a grammar in which any word can follow any other
word is quite simple, there are some implementation choices that,
as will be seen, can have a large impact on recognition
performance.



2.2. Levels of the Toolkit

2.2.1 Toolkit Core Level
The core of the Toolkit consists of a set of modules that

implement technology that is fundamental to all aspects of
speech processing and facial animation.  These modules
are written in C and form an application programming
interface (API) that is hardware and operating-system
independent. The modules contain routines for signal
processing, training artificial neural networks (ANNs) and
Hidden Markov Models (HMMs), pipelined speech
recognition with a Viterbi search, and telephone and
microphone interfaces.  The modules also include a robust
natural-language parser [5], an enhanced version of the
Festival text-to-speech system [6] originally developed at
the University of Edinburgh, an animated talking face
called Baldi [7] that was developed at the University of
California, Santa Cruz, and public-domain dictionaries.
The modules are grouped into functional libraries that are
dynamically linked and loaded at run time, allowing the
application to scale in terms of resources.  The modules
can be linked directly into a C program or individually
loaded into a programming shell, as needed.   This
architecture allows the Toolkit to be easily extended by an
individual researcher.  Great care was taken to design all
of the core components to operate in as efficient and
consistent a manner as possible, with special attention
given to modularity, portability, and extendibility.

2.2.2 Toolkit Shell Level
The main application level of the Toolkit is a

programming shell called CSLUsh (pronounced “slush”).
CSLUsh incorporates the core technology modules with
the well known, freely available, and easy-to-learn Tcl/Tk
scripting language.  Each C-language module is made
available as a Tcl scripting command, and data are
referenced as objects that can travel a network or be saved
to disk in a device-transparent way.  A CSLUsh
application is built by using Tcl or Tk commands to call
the core modules and manipulate the returned objects.

2.2.3 Toolkit GUI Application Level
At the highest level of the Toolkit are sophisticated

GUI applications that allow rapid development of spoken
language systems or the display and editing of speech data.
These applications are written using CSLUsh and provide
the user with an intuitive, powerful interface to the
underlying speech technology.  One such application is
the Rapid Application Developer (RAD); RAD provides
developers of speech applications with a graphical
authoring environment for constructing interactive
systems.  With RAD, the developer can easily control
Baldi's speech and appearance, modify the recognition
vocabulary and parameters, employ clickable images, and
play audio files.

A second application is SpeechView, which allows
users to create new waveform and label files, display data
(such as spectrograms) that are associated with a
waveform, and modify existing waveforms and label files.
Several independent waveform windows, each with zero or
more spectrogram and label windows, may be displayed

simultaneously within SpeechView for comparison and
manipulation.  Several spectrogram formats with user-
defined signal processing and display options are avail-
able, and  waveform sections corresponding to a phoneme
or word label can be played back in isolation from adjacent
phonemes or words.

Finally, it should be noted that individual researchers
can modify any level of the Toolkit, adding or changing
the C modules, CSLUsh scripts, or end-user applications to
suit their own needs.

3. Recognition Framework
The method for training neural network recognizers using
the Toolkit consists of executing a sequence of CSLUsh
scripts using description files that specify aspects of the
corpora, the training conditions, and the recognizer
architecture.  In order to train a new recognizer, the
description files are created and the CSLUsh scripts are
used to perform the steps of file collection, category
mapping, data generation, data selection, network training,
and network evaluation.   The same scripts can be used to
train task-specific or general-purpose recognizers, using
one corpus or multiple corpora.  Recognizers can be
trained in different languages; to date, the authors are
aware of the CSLU Toolkit being used to train recognizers
in English, Italian, Korean, Mexican Spanish, and
Vietnamese.

Figure 1.  Graphical overview of the recognition process,
illustrating recognition of the word “two”.

Figure 2.  HMM state sequence for a two-word
vocabulary.

The basic framework for the Toolkit's hybrid
HMM/ANN speech recognition systems is illustrated in
Figures 1 and 2.  These systems use features that represent
the spectral envelope (warped to emphasize the



perceptually-relevant aspects [8, 9]) and its energy given a
fixed window size. These spectral features are computed at
every 10-msec frame in the utterance and are input to the
neural network for classification.  The neural network
receives not just the features for a given frame, but a set of
features for the given frame and a fixed, small number of
surrounding frames. This “context window” of features is
used to provide the network with information about the
dynamics of the speech signal.

At each frame, the neural network classifies the
features in the context window into phonetic-based
categories, estimating the probabilities of each category
being represented by that set of features.   The result of the
neural network processing is a CxF matrix of probabilities,
where C is the number of phonetic-based categories, and F
is the number of frames in the utterance.  The word or
words that best match this matrix of probabilities is
determined using a Viterbi search, given the vocabulary
and grammar constraints.  The search is usually thought of
as traversing a state sequence (illustrated in Figure 2 with a
simple two-word vocabulary), where each state represents
a phonetic-based category, and there are certain
probabilities of transitioning from one state to another.

The major difference between this framework and
standard HMM systems is that the phonetic likelihoods are
estimated using a neural network instead of a mixture of
gaussians.  Using a neural network to do this estimation
has the advantage of not requiring assumptions about the
distribution or independence of the input data, and neural
networks easily perform discriminative training [10].
Also, neural networks can be used to perform recognition
much faster than standard HMMs.  A second difference is
in the type context-dependent units; whereas standard
HMMs train on the context of the preceding and following
phonemes, our system splits each phoneme into states that
are dependent on the left or right context, or are context
independent.

4. Corpus
The OGI 30K Numbers corpus [11] was used for training,
development, and testing the continuous digits recognizers.
The data in this corpus were collected from thousands of
people within the United States who recited their telephone
number, street address, ZIP code, or other numeric
information over the telephone in a natural speaking style.
The data were collected from a large number of speakers
from different backgrounds in different environments, and
the corpus contains a noticeable amount of breath noise,
glottalization, background noise (including music), and
other “real-life” aspects that tend to make automatic
speech recognition difficult.  Of almost 15,000 utterances,
approximately 6600 utterances have been transcribed and
time-aligned at the phonetic level by professional labelers.
The data have been labeled using Worldbet [12], and all
phonetic symbols in this paper use the Worldbet notation.
For the experiments reported here, we used those
utterances that contain only the eleven digits (the numbers
zero through nine, as well as “oh”).  Before separating the
data into training, development, and test sets, about 5% of
the corpus was culled for independent testing and set aside.
Three speaker-independent partitions were created from
the remaining data: 3/5 for training (6087 files, of which

2547 were hand-labeled), 1/5 for development testing
(2110 files), and 1/5 for final testing (2169 files). The
development partition was further split into five sets of
roughly 500 files each, and unless otherwise noted, the
development results reported in this paper are for the first
of these five sets (423 files2).   This subset of the
development set was used in order to be able to evaluate
word-level performance with a large number of networks
and search parameters in a reasonable amount of time.

5. Baseline System
The baseline system was trained using approximately the
same method and parameters as the digits recognizer in the
March 1998 release of the CSLU Toolkit.

One of the first steps in training the baseline system
was to automatically map the hand-labeled phonetic
symbols to a consistent set of symbols suitable for training.
For example, the second vowel in the word “seven” was
mapped to the single vowel /&/ (Worldbet notation for a
neutral vowel), as there was a high degree of variability in
the way that this vowel was labeled.  In addition, the /oU
9r/ phonemes in the word “four” were merged into one />r/
phone, and the /kh s/ phonemes at the end of the word
“six” were merged into one phone represented by the
symbol /ks/.   Finally, very short pauses (with duration less
than 30 msec) were removed in order to improve the
number of available contexts, and glottalization labels
were merged into the surrounding vowels.

The system was trained to recognize context-dependent
units.  For left and right contexts, pauses and stop closures
were mapped to the symbol /uc/ (unvoiced closure), and
dentals (/th/, /s/, and the right half of /ks/) were mapped to
the broad-category symbol /den/; otherwise the contexts
were phoneme-specific.  Each phoneme was split into one,
two, or three sub-phonetic parts. The left part is dependent
on the context of the preceding phoneme (or phonetic
broad category), the center part (if any) is context
independent, and the right part is dependent on the
following phoneme (or phonetic broad category).
Phonemes that remain as a one-part phoneme can either be
context-independent (for example, /.pau/) or dependent on
the following phoneme (for example, /th/).

The system was trained using 13 MFCC [9] features
(12 cepstral coefficients and 1 energy parameter) plus their
delta values, with a 10-msec frame rate.  Cepstral-mean
subtraction (CMS) [13] was performed, with the mean
computed using all frames of data.  The input to the
network consisted of the features for the frame to be
classified, as well as the features for frames at -60, -30, 30,
and 60 msec relative to the frame to be classified (for a
total of 130 input values).  As many as 2000 samples per
category were collected for training.  Neural-network
training was done with standard back-propagation on a
fully-connected feed-forward network. The training was
adjusted to use the negative penalty modification proposed
by Wei and van Vuuren [14].  With this method, the non-
uniform distribution of context-dependent classes that is

                                                
2 In order to keep the development subsets speaker-independent,
the subsets could not be split so that they each contained the
same number of files; the first of these sub-sets happened to
contain only 423 files.



dependent on the order of words in the training database is
compensated for by flattening the class priors of
infrequently occurring classes; this compensation allows
better modeling for an utterance in which the order of the
words can not be predicted.

Typical state duration models yield a Geometric
distribution of state occupation, with rapidly decreasing
likelihood of remaining in a given state as time increases.
This shortcoming has been addressed before, by applying
duration models based on Gamma distributions [15] as
well as duration probabilities based directly on the training
data [16].  In our implementation, transition probabilities
were set to be all equally likely, so that no assumptions
were made about the a priori likelihood of one category
following another category. In order to make use of a
priori information about phonetic durations, and to
minimize the insertion of very short words, the search was
constrained by specifying minimum duration values for
each category, where the minimum value for a category
was computed as the value at two standard deviations from
the mean duration. During the search, hypothesized
category durations less than the minimum value were
penalized by a value proportional to the difference
between the minimum duration and the proposed duration.

The grammar allowed any number of digits in any
order,  with optional silence between digits.  In addition, a
special word called “garbage” was allowed at the
beginning and end of each utterance to account for out-of-
vocabulary sounds.  This “garbage” word consisted of a
single context-independent category (also called
“garbage”); the value for this category was not an output
of the neural network, but was computed as the Nth-highest
output from the neural network at each frame [17].  For
example, if a neural network has three output values at one
frame, {0.10, 0.60, 0.30}, and N is 2, then “garbage” at
that frame is 0.30 (the second-highest value).  In this
study, N was set to 5; this value was empirically
determined by varying N until a roughly equal error rate
between insertions and deletions was obtained on our task.

Training was done for 30 iterations, and the “best”
network iteration was determined by word-level evaluation
of the final 15 iterations on the development-set data.
Then, each waveform in the same hand-labeled training set
was then recognized using this best network, with the
result constrained to be the correct utterance.  This
process, called “forced alignment,” was used to generate
time-aligned category labels.   These force-aligned
category labels were then used in a second cycle of
training, and evaluation was repeated to determine the
final digits network.

6. Experiments
We evaluated several aspects of training a digit recognition
system, including the feature set, the amount of data used
for training, the type of context-dependent categories, the
values for duration limits, and the type of grammar.   Once
these experiments were completed, we trained a final
system using forced alignment and the forward-backward
method [18].  Each of these aspects is described in more
detail below.

6.1. Features
As was noted by Barnard et al., “When speech

recognition is performed with neural [networks], one
should try to capture the important features of the desired
output classes by features with invariant meaning.  This
will often require considerable knowledge of the speech
problem…” [19].  Although our knowledge of human
speech processing is limited, the first set of experiments
was designed to determine which of the commonly used
feature types, if any, are more suitable for classification by
the neural network.  We evaluated word-level performance
of two common feature representations with and without
their delta values.

Ten sets of features were evaluated: 13th-order MFCC
with delta values (as used in the baseline system, referred
to as MFCC13D), 13th-order MFCC with no delta values
(MFCC13), 9th-order MFCC with and without delta values
(MFCC9D and MFCC9), 13th-order and 9th-order PLP
with and without delta values (PLP13D, PLP13, PLP9D,
PLP9), a combination of 13th-order PLP and 13th-order
MFCC (PM13), and a combination of 9th-order PLP and
9th-order MFCC (PM9).

The evaluation of the combination of PLP and MFCC
features was motivated by the hypothesis that training with
the two slightly different representations might provide
somewhat more robustness.

The evaluation of each type of feature with and without
delta values was motivated by the belief that the neural
networks should, in theory, be able to learn the
information provided by the delta values without having
these values provided explicitly; the context window
provided to the network already includes information
about how the signal changes over time.  By not using
delta values, a smaller number of parameters needs to be
estimated during training, which has the potential to make
the training data easier to learn.

Two different cepstral orders (9 and 13) were used to
test if the default value of 13 is an over-representation of
the signal; with a sampling rate of 8000 Hz, there are on
average only 4 formants, and the signal should be
adequately represented by 2 cepstral coefficients per
formant plus an additional coefficient to approximate the
effect of the glottal source. Again, the smaller number of
parameters required by a lower cepstral order may make
the training data easier to learn.

All features were computed using RASTA [20] pre-
processing, which filters out both very fast and very slow
changes from the short-time spectrum.  In an initial set of
experiments [21], CMS was used with the MFCC
parameters and RASTA was used with the PLP parameters
to further distinguish the two methods.  However, it was
noted that the CMS processing was not pipelined, and so
the entire waveform was used to compute the mean before
doing subtraction. RASTA, on the other hand, does not
look ahead in time when doing normalization.  This may
have given the MFCC/CMS combination a slight
advantage over the PLP/RASTA combination.  In  a real-
time system, where the utterance is processed in short
segments, CMS will not have access to the entire
waveform and may yield different results; RASTA, on the
other hand, will give the same results.  In order to have the
results of these experiments generalize to real-time



systems, RASTA was used for all experiments reported in
this paper.

6.2. Duration Limits
As noted in Section 5, duration limits are used to control
the number of insertions of very short words.  When there
is a state transition during the Viterbi search, a check is
made to see if the amount of time spent in that state is less
than a minimum value.  If the duration is less than the
minimum, then a penalty is applied, with the penalty being
linearly proportional to the difference between the
proposed state duration and the minimum duration.  (In a
similar way, maximum duration limits are also applied, but
their effect is not nearly as great as the minimum limits.)
In the baseline system, the minimum and maximum values
were set equal to two standard deviations from the mean
duration.  This was done to remove outlier durations that
are not representative of their category (such as when
phoneme deletion is not accounted for in a word model).

The formula for computing default minimum duration
values was implemented based on educated guesses about
the nature of phonetic durations.   Our experiments on
duration limits were motivated by the need for empirical
justification for duration limit values.  We evaluated each
of the 10 recognizers trained with the features described
above using four types of duration limits: with minimum
duration values taken at two standard deviations from the
mean (the default, referred to as 2SD), from the 2nd

percentile of all duration values (2P), from the 5th

percentile of all duration values (5P), and from the 8th

percentile of all duration values (8P).
The motivation for comparing the standard-deviation

based limits with the percentile-based limits was related to
assumptions about the distribution of the data.  It  was
thought that although two standard deviations from the
mean might be an appropriate value if the data are
normally distributed, a percentile-based method may be a
more reasonable method of removing outliers if the data
are not normally distributed.

6.3. Grammar
The grammar for the baseline digits recognition system
was defined as

[separator]  < digit [silence] >  [separator]
where square brackets ([]) indicate optional items, and
angle brackets (<>) indicate one or more repetitions.  The
separator word was defined as

silence [garbage] silence
where garbage, as noted in Section 5, was a context-
independent single-category word, with the category
computed as the 5th-highest output from the neural network
at each frame.  This grammar allows optional silence
between words and will be referred to as the SIL grammar.

We also investigated the use of a grammar that allows
optional garbage to occur between words as well as
silence.  This grammar was defined as

[separator] < digit [separator] > [separator]
and will be referred to as the GAR grammar.

The motivation for evaluating both of these grammars
was to test whether the optional pauses between words are
modeled sufficiently well by the silence category, or
whether a more complex model is needed.  The risk of

using the GAR grammar was that the number of deletions
would increase, by having valid words recognized as
garbage. On the other hand, it was thought that the GAR
grammar might provide better modeling of the non-speech
sounds that may occur between words.

6.4. Categories
As mentioned in Section 3, the networks are trained to
recognize context-dependent categories.  The contexts of
each category can be either phoneme-specific or contain
broad classes of similar phonemes; we evaluated all ten
sets of features with both types of contexts: phoneme-
specific (the default, PHON) and broad-class (BC).   The
broad classes of phonetic contexts are specified in Table 1.
(The notation “_l” indicates that the context occurs on the
left side of a phoneme; the “_r” notation indicates a
context occurring on the right side of a phoneme.)  The
PHON recognizer had 218 outputs, and the BC recognizer
had 149 outputs.

name of
broad class

phonemes in
broad class

bck_l oU w u
bck_r oU w
den_l s z th T ks
den_r s z th T
lab f v
ret_l 9r >r
ret_r 9r
sil .pau tc kc .garbage

Table 1. Broad class names and phonemes in each broad
class.  The “_l” and “_r” notation in the broad class name
indicate whether the context occurs to the left or right of
the phoneme.

The motivation for using the PHON set of categories
was that the phoneme-specific differences in a particular
context may provide additional information about the
word. The motivation for using the BC set of categories
was the belief that the phoneme-specific differences within
one broad class are minimal, and that trying to determine
minor phonetic differences in multi-speaker data might be
difficult; the reduction in the number of categories to be
learned may make training easier.

6.5. Amount of Data
We trained all of the systems described above on hand-
labeled data using as many as 2000 samples per category.
Using the best duration, garbage, and category models, we
then trained networks on the 10 feature sets with all
available hand-labeled data.

The motivation for this comparison was to estimate the
effect on recognition performance when the amount of
training data is increased.

6.6. Forced Alignment Training
Training on force-aligned data often results in improved
recognizer performance because the sub-phonetic category
alignments are determined from the speech data rather than
by simply dividing the duration of a phonetic label into
halves or thirds.  Furthermore, it allows training on all



available training data, instead of just the available hand-
labeled training data.   The best network from Section 6
was used to force-align all training data, and a forced-
alignment system, called FA, was trained from these data.

6.7. Forward-Backward Training
In addition to forced-alignment training, it is possible to
use the forward-backward method to train neural networks
[18].  We trained with this method for 45 iterations, using
the FA recognizer as a starting point, and created a
recognizer called FB.  This was the recognizer on which
test-set evaluation was done.

6.8. Evaluation Methodology
Due to the large number of possible combinations of tests,
we conducted the evaluation using the following
methodology:
1. Create the baseline system as described in Section 5,

to confirm that the results of this recognizer are
comparable to the results of the March 1998 CSLU
Toolkit digits recognizer.

2. Train and evaluate the 10 sets of features with 2000
samples per category and the phoneme-specific
category model, using the four duration models and
two grammar models in combination (80 systems
trained with up to 2000 samples per category,
evaluated on the development set).

3. Using the best duration and grammar models from
Step 2, train and evaluate the broad-class category
model with the 10 sets of features (an additional 10
systems, trained with up to 2000 samples per category
and evaluated on the development set).

4. Using the best category, duration, and grammar
models from Step 3, train networks with the 10 feature
sets on all available hand-labeled data, to study the
effect of the amount of data (an additional 10 systems,
trained with all hand-labeled training data and
evaluated on the development set).

5. Using the best network from Step 4, do forced-
alignment and forward-backward training (an
additional 2 systems, trained with all training data and
evaluated on the development set).

6. Select the best network from Step 5 and perform test-
set evaluation (final evaluation of best system).

For evaluating the final recognition system and the
baseline system on the test set, we computed the
significance level using McNemar’s test [22] (at the 5%
level) and confidence intervals for both systems (at 95%).
For computing the confidence intervals, we divided the
test set into ten subsets (with approximately 217 utterances
per subset) and determined the recognition accuracy on
each of these subsets.

7. Results
The baseline system that we trained had word-level
accuracy of 94.54% and sentence-level accuracy of
80.61%, which is comparable to the performance of the
digits recognizer in the March 1998 release of the CSLU
Toolkit, with 94.63% word accuracy and 82.27% sentence
accuracy.  A significant difference between the two

systems can not be claimed for the sentence-level results at
the 5% level (P=0.44).

For the next set of experiments, statistical significance
testing was not done, because our goal was to measure
improvement of a final system that employs all of the best
available features; our goal was  not to test whether the
features that we selected as best can be considered
significantly better3.  Significance testing was done on the
final system.

Figures 1 shows the results of the 10 feature sets
evaluated on the four duration models with the SIL
grammar.  Figure 2 shows the results of the 10 feature sets
evaluated on the four duration models with the GAR
grammar.  It is immediately obvious that the 2SD duration
model yields lower word-level accuracy than the other
duration models for all ten feature sets and two grammars.
It can also be seen by comparing Figures 1 and 2 that the
GAR grammar has better results than the SIL grammar for
all ten features and four duration models.  The average
word-level results for the 2SD, 2P, 5P, and 8P duration
models with the GAR grammar are 94.54%, 96.51%,
96.37%, and 95.88%, and so the GAR grammar with the
2P duration model was selected as the best combination.
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Figure 3: Word-level accuracy results for each of the 10
features using the four duration models with the SIL
grammar. The horizontal axis codes are explained in
Section 6.1.  The black bar is for the 2SD limits, the white
bar is for the 2P limits, the dark-gray bar is for the 5P
limits, and the light-gray bar is for the 8P limits.
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Figure 4: Word-level accuracy results for the same 10
feature sets as in Figure 1,  using the same four duration
models but with the GAR grammar.

                                                
3 If statistical significance is not found, then significance can not
be detected, which is different than the difference being
insignificant.



Figure 5 shows the word-level performance of the BC
and PHON category models for the ten feature sets (using
the GAR grammar and 2P duration limits). The BC
recognizer had 149 outputs, and the PHON recognizer had
218 outputs. It can be seen that the recognizers trained
with the PHON categories had results consistently better
than the recognizers trained using the BC categories, with
an average 14% reduction in error.  As a result, the PHON
categories were selected as best.

Figure 6 compares the word-level performance of the
recognizers trained using up to 2000 samples per category
(177560 vectors, with an average of 814 samples per
category) with the recognizers trained using all available
hand-labeled data (402493 vectors, with an average of
1846 samples per category).  The recognizers trained using
all available data had, on average, a 7% reduction in error
with 2.27 times the amount of training data.   The feature
set with the best performance on all training data was
PLP13D, and so this set was used for subsequent
experiments.
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Figure 5: Word-level accuracy results for the same 10
feature sets as in Figure 1 (using the GAR grammar and 2P
limits),  comparing the PHON categories (dark bar) with
the BC categories (light bar).
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Figure 6: Word-level accuracy results for the same 10
feature sets as in Figure 1 (using the GAR grammar, 2P
limits, and PHON categories),  comparing the recognizers
trained with 2000 samples per category (dark bar) and
recognizers trained with all hand-labeled data (light bar).

Given the results of these experiments, the best set of
parameters was determined to be the GAR grammar that
allows optional garbage between words, the 2P duration
limits which are computed from the 2nd percentile of
duration values, the use of all available data, the PHON set

of phoneme-specific categories, and 13th order PLP
coefficients with their delta values. The system trained
with these features on all available hand-labeled data had
97.06% word accuracy and 88.65% sentence accuracy on
the development set.

For forced-alignment training, an average of 7676
samples per category were available.  The development-set
results from forced-alignment training were 97.56%
(word) and 89.83% (sentence).  Finally, the development-
set results from forward-backward training were 97.56%
(word) and 89.60% (sentence).

The results of test-set evaluation are summarized in
Table 2.  The 91.24% sentence-level result on 2169 files
(12437 words) is significantly better than the 80.08%
baseline result (P<0.01), and the confidence interval is
±0.73% for the baseline recognizer and ±0.71% for the
new recognizer.

System Word
Accuracy

Sentence
Accuracy

Confidence
Interval

Reduction
in Error

Baseline 94.65% 80.08% 94.65±0.73% n/a
New 97.52% 90.36% 97.67±0.71% 56%

Table 2: Test-set results for the baseline system and the
new system, where the new system was trained with the
set of best parameters as determined from the
experiments in this paper.  Evaluation was done on 2169
utterances (12437 words).

8. DISCUSSION
The results indicate that changing the grammar and

duration limits had the greatest effect on recognizer
performance, and that forced alignment of all data had the
second-greatest effect. 

The use of all available hand-labeled data, the type of
categories, and the choice of features yielded smaller
improvements.  For the choice of features, the use of 13
cepstral coefficients and delta features often yielded a
small improvement over the use of 9 coefficients and no
delta features.  This suggests that the extra cepstral
coefficients and delta features do in fact provide useful
information, although the differences in performance are
overshadowed by other factors. The combination of PLP
and MFCC features did not yield a noticeable, consistent
improvement over the use of delta features with either
MFCC or PLP.

The combination of all best feature sets and models, as
well as forced-alignment training, did result in a
statistically significant 50% reduction in test-set error.
Rather than one factor being principally responsible for the
improvement, it seems that the duration limits, grammar,
amount of data, and forced-alignment training were all
effective in contributing to the final performance.  The
forward-backward training did not improve performance in
this experiment, but it should be noted that in a previous
experiment on the same development set [21], forward-
backward training did result in a 23% reduction in error.

The run-time complexity of the final system is the
same as for the baseline system; both run in approximately
real-time and have the same network configuration.
Training time has been increased, simply because more
training data is used for forced alignment and the forward-



backward method requires another cycle of network
training; in many cases, the improvement in results would
justify this additional training time.

For those who would like to replicate our results or try
further experiments, both the OGI Numbers corpus and the
CSLU Toolkit can be downloaded from
http://cslu.cse.ogi.edu/ (free for academic use).

9. ACKNOWLEDGEMENTS
The authors would like to thank Johan Schalkwyk, Jacques
de Villiers, Ben Serridge, Chris Covert, and the CSLU
member companies.  This work was sponsored in part by
the National Science Foundation (grant numbers GER-
9354959 and IRI-9614217); the views expressed in this
paper do not necessarily represent the views of the NSF.

10. REFERENCES

[1] Sutton, S., Cole, R.A., de Villiers, J., Schalkwyk, J.,
Vermeulen, P., Macon, M., Yan, Y., Kaiser, E., Rundle,
B., Shobaki, K., Hosom, J.P., Kain, A., Wouters, J.,
Massaro, D., and Cohen, M., “Universal Speech Tools:
The CSLU Toolkit,” ICSLP-98, vol. 7, pp. 3221-3224,
Sydney, Australia, November 1998.

[2] http://cslu.cse.ogi.edu/tutordemos

[3] Cosi, P., Hosom, J.P., Shalkwyk, J., Sutton, S., and
Cole, R.A., “Connected Digit Recognition Experiments
with the OGI Toolkit’s Neural Network and HMM Based
Recognizers,” IVTTA-ETWR-98, pp. 135-140, September
1998.

[4] http://cslu.cse.ogi.edu/toolkit

[5] Kaiser, E.C., Johnston, M., and Heeman, P.A.,
“PROFER: Predictive, Robust Finite-State Parsing for
Spoken Language,” ICASSP-99, vol. 2, pp. 629-632,
Phoenix, AZ, March 1999.

[6] Black, A. and Taylor, P., “Festival Speech Synthesis
System: System Documentation (1.1.1),” Human
Communication Research Centre Technical Report
HCRC/TR-83, Edinburgh, 1997.

[7] Massaro, D. W., Perceiving Talking Faces: From
Speech Perception to a Behavioral Principle. MIT Press:
Cambridge, MA, 1998.

[8] Hermansky, H., “Perceptual Linear Predictive (PLP)
Analysis of Speech,” Journal of the Acoustical Society of
America, vol. 87, no. 4, pp. 1738-1752, April 1990.

[9] Davis, S. and Mermelstein, P., “Comparison of
Parametric Representations for Monosyllabic Word
Recognition,” IEEE Transactions on Acoustics, Speech
and Signal Processing, vol. ASSP-28, pp. 357-366, 1980.

[10] Bourlard, H., “Towards Increasing Speech
Recognition Error Rates,” Eurospeech’95, vol. 2, pp. 883-
894, Madrid, Spain, September 1995.

[11] Cole, R.A., Fanty, M., Noel, M., and Lander, T.,
“Telephone Speech Corpus Development at CSLU,”
ICSLP-94,  vol. 4, pp. 1815-1818, September 1994.

[12] Hieronymus, J,  ASCII phonetic symbols for the
world’s languages: Worldbet. AT&T Bell Laboratories,
Technical Memo, 1994.

[13] Furui, S., “Cepstral Analysis Techniques for
Automatic Speaker Verification.” IEEE Transactions on
Acoustic Speech and Signal Processing, vol. 29, no. 2, pp.
254-272, 1981.

[14] Wei, W. and Van Vuuren, S., “Improved Neural
Network Training of Inter-Word Context Units for
Connected Digit Recognition,” ICASSP-98, vol. 1, pp.
497-500, May 1998.

[15] Burshtein, D., “Robust Parametric Modeling of
Durations in Hidden Markov Models”, ICASSP-95,
Detroit, pp. 548-551, 1995.

[16] Ferguson, J. D., “Variable Duration Models for
Speech”, Proceedings of Symposium on the Application of
Hidden Markov Models to Text and Speech, pp. 143-179,
Princeton, 1980.

[17] Boite, J.M., Bourlard, H., D’hoore, B., and Haesen,
M., “A New Approach Towards Keyword Spotting,”
EUROSPEECH ’93, vol. 2, pp. 1273-1276, September
1993.

[18] Yan, Y., Fanty, M. and Cole, R., “Speech Recognition
Using Neural Networks with Forward-Backward
Probability Generated Targets,” ICASSP-97, vol. 4, pp.
3241-3244, April 1997.

[19] Barnard, E., Cole, R.A., Vea, M., and Alleva, F.,
“Pitch Detection with a Neural-Net Classifier,” IEEE
Transactions on Signal Processing, vol. 39, no. 2, pp. 298-
307, February 1991.

[20] Hermansky, H. and Morgan, N., “RASTA processing
of speech,” IEEE Transactions on Speech and Acoustics,
vol 2, no. 4, pp. 587-589, October 1994.

[21] Hosom, J. P., Cosi, P., and Cole, R. A., “Evaluation
and Integration of Neural-Network Training Techniques
for Continuous Digit Recognition,” ICSLP-98, vol. 3, pp.
731-734, Sydney, Australia, November 1998.

[22] Gillick, L. and Cox, S.J., “Some Statistical Issues in
the Comparison of Speech Recognition Algorithms,”
ICASSP-89, pp. 532-535, 1989.


