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ABSTRACT 
The development of a high-performance telephone-
bandwidth speaker independent connected digit 
recognizer for Italian is described. The CSLU Speech 
Toolkit was used to develop and implement the hybrid 
ANN/HMM system, which is trained on context-
dependent categories to account for coarticulatory 
variation. Various front-end processing and system 
architecture were compared and, when the best features 
(MFCC with CMS + ∆) and network (4-layer fully 
connected feed-forward network) were considered, there 
was a 98.92% word recognition accuracy and a 92.62% 
sentence recognition accuracy) on a test set of the FIELD 
continuous digits recognition task. 

1. INTRODUCTION 
The use of Automatic Speech Recognition (ASR) over 
standard and, more recently, cellular telephone lines has 
been steadily increasing over the past several years. For 
many applications of speech recognition over the 
telephone, such as credit card and account number 
validation, catalog ordering and digit dialing by voice, 
connected digit recognition (CDR) is absolutely essential.  
Over the last two decades much progress has been made 
for recognizing spoken connected digit sequences 
recorded under very controlled non-telephone network 
condition [1-6]. CDR accuracies on the TI-database [7], 
as reported in the literature, have been superb with the 
best string accuracies almost approaching 100%. In spite 
of this, the recognition of connected digit strings spoken 
over telephone lines is a much more complicate task and, 
until now, it is not completely solved. The telephone 
network introduces so many effects on speech that the 
current ASR technology may not be so robust to let us 
achieve comparable recognition performance, even if 
continuous improvements have recently been obtained on 
English [8-10] and other languages such as Italian [11-
13]. The “connected digit recognition” small-vocabulary 
task, with ten digits from “zero” through “nine”, requires 

extremely high accuracy, and focuses research on 
acoustic-level processing. 
The aim of this work was that of investigating mostly the 
effects of the feature set in order to optimize the Italian 
digit recognition accuracy over the telephone channel. 
Various combinations of features, such as PLP [14] and 
MFC coefficients [15], together with two normalization 
procedures, such as RASTA [16] and Cepstral Mean 
Subtraction [17], were investigated. 

2. RECOGNITION FRAMEWORK 
The recognizer being described in this work was 
developed and implemented by the use of the CSLU 
Speech Toolkit [18] freely available through the CSLU 
OGI Web site [19]. The basic framework considered for 
recognition was that corresponding to an hybrid 
ANN/HMM architecture [20], The major difference 
between this framework and standard HMM systems is 
that the phonetic likelihoods are estimated using a neural 
network instead of a mixture of gaussians. A second 
difference is in the type context-dependent units. Whereas 
standard HMMs train on the context of the preceding and 
following phonemes, our system splits each phoneme into 
states that are dependent on the left or right context, or are 
context independent. 

3. DATA 
Three corpora have been used in this work in order to 
train, develop and test the telephone-channel digits 
recognition system: FIELD, PHONE [12], and PANDA 
[11], [21]. The FIELD corpus contains telephone numbers 
that were collected as part of a semi-automated collect-
call service, and the PHONE corpus contains random 
digits strings obtained from cooperative but naive 
speakers and has a large number of hesitations, breath 
noise, and other “spontaneous speech phenomena”. The 
speech material contained in the PANDA corpus belongs, 
instead, to a “credit card” domain; it corresponds to 
various credit-card-like digit strings pronounced by more 
than 1000 speakers. The speech material was divided into 
training, development and test sub-sets. 
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4. EXPERIMENT 
The digit recognizer was trained on context-dependent 
categories to account for coarticulatory variations and  
recognizes any connected sequence of the 10 Italian digits 
(SAMPA transcription [22]): 
0 [dz E r o],    1 [u n o],    2 [d u e],    3 [t r E],    4 [k w a 
tt r o],     5 [tS i n k w e],   6 [s E I],   7 [s E tt e],   8 [O tt 
o],   9 [n O v e]. 
A simple grammar [<any> ( <digit> [silence] )+ <any>] 
allowing any digit sequence in any order, with optional 
silence between digits, was considered. 
4.1 Acoustic units 
A three/four-layer fully connected feed-forward network 
was trained to estimate, at every frame, the probability of 
116 context-dependent phonetic categories. These 
categories were created by splitting each Acoustic Unit 
(AU), into one, two, or three parts, depending on the 
length of the AU and how much the AU was thought to be 
influenced by coarticulatory effects. “silence” (.pau 
.garbage @br) and “closure” are 1-part units, “vowel” (i e 
E a O o u) is a 3-part unit, “unvoiced plosive “ (t k) is 1-
part  right dependent unit, “voiced plosive” (d), “affricate” 
(dz tS), “fricative” (s v), “nasal” (n), “liquid retroflex”( r ) 
and “glide” (w) are all 2-part units. AU states were trained 
for different preceding and following phonetic contexts, 
and some phonetic contexts were grouped together to 
form a broad-context grouping. The broad-context 
groupings were done based on acoustic-phonetic 
knowledge (see Table 1). 

Group Acoustic units in 
group 

Description 

$sil .pau,  .garbage @br Silence 
$pld d t tcl dental plosive 
$alv dz s Alveolar 
$lab v Labial 
$pal tS Palatal 
$ret r Retroflex 
$nas n Nasal 
$vel k kcl Velar 
$bck u o O w back vowel/glide 
$mid a E mid vowel 
$frn i, e front vowel 

Table 1. Groupings of acoustic units into clusters of similar 
units, for the Italian digits task. 

4.2 Feature extraction  
As for feature extraction, various combination of MFCC 
and PLP coefficients (with and without CMS and RASTA 
processing), plus their delta or delta-delta values were 
compared.  They were continuously computed with a 10-
msec frame rate. The input to the network consisted of the 
features for the frame to be classified, as well as the 
features for frames at -60, -30, 30, and 60 msec relative to 

the frame to be classified. In the case of 12 MFCC 
coefficients plus the energy plus their delta values the 
network consisted of  130 input nodes. 
4.3 Training strategy  
Neural-network training was done with standard back-
propagation on a fully connected feed-forward network. 
The training was adjusted to use the negative penalty 
modification proposed by Wei and van Vuuren [23]. With 
this method, the non-uniform distribution of context-
dependent classes, that is dependent on the order of words 
in the training database, is compensated for by flattening 
the class priors of infrequently occurring classes. This 
compensation allows better modeling for an utterance in 
which the order of the words can not be predicted. 
4.4 Duration constraints  
Transition probabilities were set to be all equally likely, 
so that no assumptions were made about the a priori 
likelihood of one category following another category. In 
order to make use of a priori information about phonetic 
durations, and to minimize the insertion of very short 
words, the search was constrained by specifying minimum 
duration values for each category, where the minimum 
value for a category was computed as the value at the 2nd 
or 8th percentile of all duration values. With a bigger 
percentile the mean duration for each phonetic category is 
increased thus reducing the probability to select short 
duration categories while increasing the probability of 
cancellation errors. During the search, hypothesized 
category durations less than the minimum value were 
penalized by a value proportional to the difference 
between the minimum duration and the proposed duration. 
The grammar allowed any number of digits in any order, 
with optional silence between digits. In addition, a special 
word called “Garbage” was allowed at the beginning and 
end of each utterance to account for out-of-vocabulary 
sounds. This “garbage” word consisted of a single 
context-independent category (also called “garbage”); the 
value for this category was not an output of the neural 
network, but was computed as the Nth-highest output 
from the neural network at each frame [24]. In this study 
N was set to 5, if garbage model is included, and this 
value was empirically determined by varying N until a 
roughly equal error rate between insertions and deletions 
was obtained on our task. In our experiments N was also 
set to 100 setting in practice to 0 the probability of 
selecting a garbage category, simultaneously reducing 
cancellation errors. 
4.5  “Baseline” 
The “baseline” system was trained with part of the FIELD 
corpus (38%) corresponding to 352 digit sequences (3307 
digits), and the whole PHONE corpus (2241 digit 
sequences, 9131 digits). Moreover, 13% of the FIELD 
corpus was used for the development (127 digit 
sequences, 1086 digits) and the remaining 49% (488 digit 



sequences, 4614 digits) was used for the test. In summary, 
12438 hand-labeled digits were used for training, 1086 
were considered for the development and 4614 for the test 
phase. The training data were searched to find all the 
vectors of each category in the hand-labeled training 
section. The neural network was trained using the back-
propagation method to recognize each context-dependent 
category in the output layer. Training was done for 45 
iterations, and the “best” network iteration (“baseline” 
network - B) was determined by evaluation on the FIELD 
development-set. With this network a final test was also 
executed. 
4.6 “Forced alignment” 
Each waveform in the “baseline” hand-labeled training 
material plus the whole PANDA speech corpus (1041 
digit sequences, 16247 digits) was then recognized using 
the best obtained network (B), with the result constrained 
to be the correct sequence of digits. This process, called 
“forced alignment”, was used to generate time-aligned 
category labels. These force-aligned category labels were 
then used in a second cycle of training and evaluation was 
repeated to determine the new best network (“force 
aligned” network - FA), which was finally evaluated with 
the same development and test data. 
4.7 “Forward Backward” training 
In order to explore the possibility to further improve the 
recognition results, the “forward-backward” (FB) training 
strategy was [25] recurrently applied (three times). Like 
most of the other hybrid systems, the neural network in 
this system is used as a state emission probability 
estimator. A three/four-layer fully connected neural 
network can be conceived, with the same configuration as 
that of the baseline and forced-aligned neural networks 
and the same output categories. Unlike most of the 
existing hybrid systems which do not explicitly train the 
within-phone relative likelihoods, this new hybrid trains 
the within-phone models to probability estimates obtained 
from the forward-backward algorithm, rather than binary 
targets. To start FB training an initial binary-target neural 
network is required. For this initial network, the best 
network resulting from forced-alignment training (FA) 
should be used. Then the forward-backward re-estimation 
algorithm could be used to regenerate the targets for the 
training utterances. The re-estimation can be implemented 
in an embedded form, which concatenates the phone 
models in the input utterance into a "big" model and re-
estimates the parameters based on the whole input 
utterance. The networks would be trained using the 
standard stochastic back-propagation algorithm, with 
mean-square-error as the cost function. 
4.8 Results 
As illustrated in Table 2, various combination of features 
were considered, and, up to now, in terms of word and 
sentence recognition accuracy, the best obtained 

experimental results are those illustrated in Table 3 
referring to 12 MFCCs with CMS, energy and 
corresponding delta values for a four-layer fully 
connected feed-forward network. After a forced alignment 
starting from the best network obtained in previous 
experiments [13] (see results on the left column of Table 2 
for N=5 and 2nd percentile), the global best network is that 
corresponding to the best network after the second 
Forward-Backward pass (FB2 – nnet14) characterized by 
a very high recognition accuracy, especially considering 
the high degradation level, in terms of background noise, 
channel noise or other non-speech phenomena, of the test-
set speech material. In particular 99.72% WA and 97.44% 
SA was obtained on the development-set, and 98.92% 
WA and 92.62% SA on the test-set. Considering the test-
set, these results correspond to 66% and 58% reduction in 
error compared to the performance obtained by IRST 
(96.8%) and CSELT (97.4%) respectively, at the word-
level, and to 58% and 48% reduction in error compared 
with IRST (82.4%) and CSELT (85.7%) results at the 
sentence level [11][12][21]. 
               2nd percentile    8th percentile 
               N=5            N=100 

Table 2. Best recognition performances, in terms of “Word 
Accuracy” (WA) and “Sentence Accuracy” (SA) for various 
combination of features. Mean duration values are set as the 2nd 

[13] and 8th percentile and garbage is set as the Nth-highest 
output from the neural network at each frame. N=100 
means in practice “no garbage model”. The last raw refers 
to a four-layer fully connected feed-forward network (see 
details in Table 3). 

 WA SA  WA SA 
dev 99.72 99.15  99.72 97.44 mfcc13(cms)+ 

∆∆∆∆ test 98.68 90.76  98.90 92.01 
dev 99.82 99.15    mfcc13(cms)+ 

∆+∆∆+∆∆+∆∆+∆2222 test 98.40 89.53    
dev 99.72 98.29    mfcc7(cms)+ 

∆+∆∆+∆∆+∆∆+∆2222 test 97.88 86.24    
dev 99.54 96.58    plp13(rasta)+ 

mfcc13(cms) test 97.79 85.42    
dev 99.63 97.44    plp13+ 

mfcc13(cms) test 97.70 85.42    
dev 94.11 72.65    plp13+ 

mfcc13 test 89.49 54.00    
dev    99.54 97.44 plp13(cms)+ 

∆∆∆∆ test    98.70 90.57 
dev 99.54 97.44    plp9(rasta)+ 

mfcc9(cms) test 98.01 87.06    
dev 99.72 98.29    [plp9(rasta)+ 

mfcc9(cms)]+∆∆∆∆ test 98.27 88.50    
dev 99.45 95.73    [plp7(rasta)+ 

mfcc7(cms)]+ 

  

 ∆∆∆∆ test 98.01 87.68    
dev    99.82 98.29 [plp7(cms)+ 

mfcc7(cms)]+∆∆∆∆ test    98.64 90.57 
dev    99.63 98.29  [plp13(cms)+ 

mfcc13(cms)]+∆+∆∆+∆∆+∆∆+∆2222 test    98.94 92.01 
       

dev    99.72 97.44 mfcc13(cms) 
+∆∆∆∆ test    98.92 92.62 



Table 3. Recognition performance for a four-layer fully 
connected feed-forward network for the best Forced-
Alignment (FA - nnet-14) and Forward-Backward (FB1 - nnet-
14, FB2 – nnet-14, FB3 – nnet-29). The best network for testing 
the system was chosen as the best FB2 network (nnet-14). 

5. CONCLUSIONS 
In summary, this work yielded a state-of-the-art 
telephone-bandwidth Italian speaker independent 
connected digit recognition system. The current-best 
Italian digit recognizer was implemented in the CSLU 
Toolkit’s dialogue design module and a simple real-time 
Italian-language demonstration program has been created.  
The present Italian digit recognizer will be included in the 
next version of the CSLU Speech Toolkit. 
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