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ABSTRACT
An Italian speaker-independent continuous-speech digit
recognizer is described. The CSLU Toolkit was used to develop
and implement the system. In the first set of experiments, the
SPK-IRST corpus, a collection of digit sentences recorded in a
clean environment, was used both for training and testing the
system. In the second set, a band-filtered version (between 300
Hz and 3400 Hz) of the SPK-IRST corpus was considered for
training, while the telephone PANDA-CSELT corpus was used
for testing the system. A hybrid HMM/NN architecture was
applied; in this architecture, a three-layer neural network is used
as a state emission probability estimator and the conventional
forward-backward algorithm is applied for estimating continuous
targets for the NN training patterns. The final network, trained to
estimate the probability of 116 context-dependent phonetic
categories at every 10-msec frame, was not trained on binary
target values, but on the probabilities of each phonetic category
belonging to each frame. Training and testing will be described
in detail and recognition results will be illustrated.

1. INTRODUCTION
The recognition engine used in the experiments described in this
paper is based entirely on the CSLU Toolkit1, an integrated set of
software and documentation that represents the state of the art in
tools for research, development, and learning about spoken
language systems [1].  In particular, it is based on a hybrid
HMM/ANN framework [2, 3], in which a frame-based
recognition strategy with context-dependent sub-phonetic states
is adopted, where the state probability estimation is computed
using a neural network.

2. CORPORA
The SPK-IRST [4] and the PANDA-CSELT [5] corpora are
utilized in this work. The SPK-IRST is an Italian database of
isolated and connected digits designed and collected at IRST
(Istituto per la Ricerca Scientifica e Tecnologica, Trento, Italy),
and conceived for speaker recognition and verification purposes
[6]. The speech material considered for this work belongs to 40
speakers (19 females and 21 males) and most of the speakers are
from the North-East of Italy. Twenty repetitions of the ten Italian
digits and twenty different sequences of 8 randomly selected

connected digits were recorded in a quiet room for each speaker
during five recording sessions scheduled on different days2.
Speech was acquired at 48 kHz with 16-bit accuracy,
downsampled to 16 kHz and, finally, stored in SPHERE format3

waveform files. Time-aligned phonetic transcriptions, labeled
using the Speech Assessment Methods Phonetic Alphabet
(SAMPA) [7], are provided for 10 speakers while word
transcriptions are provided for each isolated and connected digit
utterance in the corpus.

PANDA-CSELT was collected over the Italian Public
Switched Telephone Network [5]. The data in this corpus were
collected from thousands of people within various regions of
Italy  who recited their credit card number over the telephone in a
natural speaking style.  Because the data were collected from a
large number of speakers from different backgrounds in different
environments, the corpus contains a noticeable amount of aspects
of "real-life" speech, including noise, widely-varying energy
levels, dialect differences and other complications.

3. SYSTEM
The recognition system is based on the baseline CSLU-Toolkit
frame-based approach illustrated in Figure 1. The waveform is
divided into frames and specific features are computed for each
frame. These features describe the spectral envelope of the
speech at that frame and at a small number of surrounding
frames. The features in each frame are classified into phonetic-
based categories using a neural network. The outputs of the
neural network are used as estimates of the probability, for each
phonetic category, that the current frame contains that category.
The matrix of probabilities and a set of pronunciation models is
used by a Viterbi search to determine the most likely words.

The neural network is trained to estimate the posterior
probabilities of context-dependent phonetic categories which,
given a certain lexicon, can be determined from the phonetic-
level pronunciation models, the groupings of phones into clusters
of similar phones, and the number of parts to split each phoneme
into. One-part phonemes are context independent. Two-part
phonemes have the left (first) half dependent on the preceding
phoneme and the right (last) half dependent on the following
phoneme. Three-part phonemes have a left third that is dependent
on the preceding phoneme, a middle third that is context



independent, and a right third that is dependent on the following
phoneme.

Figure 1. Overview of baseline CSLU-Toolkit frame-based
speech recognition using neural networks.

4. EXPERIMENTS
In the first experiment (exp1), the clean SPK-IRST corpus (C1)
was used for training, developing and testing the system. Three-
fifths of the available data were randomly chosen and allocated
(in a speaker-pooled way) for training (C1-train), and one-fifth
each was allocated for development (C1-dev) and testing (C1-
test). In the second experiment (exp2), a band-filtered version
(between 300 Hz and 3400 Hz) of the SPK-IRST corpus (C2)
was considered for training and development. The 10 speakers
for which hand labels were available were used for training (C2-
train), while the remaining 30 speakers were used for developing
(C2-dev). A subset of the telephone PANDA-CSELT corpus
(C3) [5] was used for testing the system (C3-test). It is quite
evident that recognition performance in this case will greatly
suffer the critical mismatch between training and testing speech
material. The Italian digit lexicon and grammar to be recognized
in both experiments are illustrated in Table 1.

word pronunciation
zero {dz E r o}
uno {u n o}
due {d u e}
tre {t r E}

quattro {k w a tt r o}
cinque {tS i n k w e}

sei {s E I}
sette {s E tt e}
otto {O tt o}
nove {n O v e}

separator {.pau [.garbage] .pau}

$digit zero | uno | due | tre | quattro |
cinque | sei | sette | otto | nove

$grammar [separator%%] <
$digit [separator%%]

> [separator%%]
Table 1. Italian digit lexicon and grammar.

4.1 Segmentation
A three-layer neural network was trained to estimate, at

every 10-msec frame, the probability of 116 context-dependent
phonetic categories. These categories are created by splitting
each phoneme, as illustrated in Table 2,  into one, two, or three
parts, depending on the length of the phoneme and how much the
phoneme was thought to be influenced by coarticulatory effects.
Phoneme states were trained for different preceding and
following phonetic contexts, and some phonetic contexts were
grouped together to form a broad-context grouping. For example,
the left part of fricative /s/ and affricates /tS/, and /dz/ were
combined, as illustrated in Table 3, into one broad-context
category. The broad-context groupings were done based on
acoustic-phonetic knowledge.

phone parts phone parts
.pau 1 tS 2

n 2 dz 2
r 2
s 2 u 3
v 2 o 3
w 2 O 3
d 2 a 3
t 2 E 3
k 2 e 3
tt 2 I 3

Table 2. Phones and number of parts to split each phone into, for
the Italian digit lexicon.

group phones in group description
$sil .pau,  .garbage silence

$udp_l t, tt unvoiced burst to the left
$udp_r t, tt, tS unvoiced closure to the right
$vdp_l d voiced burst to the left
$vdp_r d, dz voiced closure to the right

f_l s, tS, dz frication to the left
f_r s frication to the right

$bck u, o, O back vowels
$mid a, E mid vowels
$frn i, e front vowels

Table 3. Groupings of phones into clusters of similar phones.

4.2 Feature Extraction
A combination of 13 Perceptual Linear Predictive Coefficients
(PLPCs) [8] and 13 Mel Frequency Cepstral Coefficients
(MFCCs) [9] were computed using RelAtive SpecTrAl (RASTA)
[10] analysis and Cepstral Mean Subtraction (CMS) [11] pre-
processing techniques, respectively. The combination of PLP and
MFCC features was motivated by the hypothesis that training
with the two slightly different representations would provide
somewhat more robustness to noise, and that the combination of
RASTA (which emphasizes regions of transition) and CMS
(which does not emphasize transitions) would provide
complimentary information.

4.3 Baseline Training
At each frame, a 130 dimensional vector of PLPCs+MFCCs was



constructed using five surrounding frames; 13 PLPCs and 13
MFCCs from frames at -60, -30, 0, 30, and 60 msec relative to
the frame of interest were considered.

The training data were searched to find all the vectors of
each category in the hand-labeled section of C1 in exp1 and of
C2 in exp2. The neural network was trained using the back-
propagation method with 130 inputs, 200 nodes in the single
hidden layer, and one node for each context-dependent category
in the output layer (for a total of 116 output nodes). Training was
done for 30 iterations, and the iteration with the best performance
on the development set was chosen to be the final baseline neural
network. This network, which will be referred to as ’baseline’
network B (B1 or B2 in the case of experiment 1 or 2
respectively), was finally evaluated with the test speech material
(C1-test and C3-test for experiments 1 and 2, respectively).

4.4 Forced alignment
The SPK-IRST corpus we want to train on has been

completely orthographically transcribed but only partially
phonetically segmented and labeled. In this case, we can create
either phonetic labels or category labels for the entire training
material using a process called "forced alignment". Forced
alignment is the process of using an existing recognizer to
recognize a training utterance, where the grammar and
vocabulary are restricted to be the correct result. The result of
forced alignment is a set of time-aligned labels that give the
existing recognizer’s best alignment of the correct phonemes or
categories. If the existing recognizer is good, then the labels will
have more consistent time alignments than the hand labels. These
labels can then be used for training a new recognizer. Even if the
existing recognizer produces some alignment errors, this process
can be used to determine an initial set of labeled training data.
The best previously-trained networks B1 and B2 are, in fact,
utilized to force align all of the training data in C1 and C24,
respectively, and a new “force-aligned” network is trained for a
certain number of iterations, ranging from 30 to 60, using all of
these new phonetically aligned data. The best force-aligned
network, as evaluated on the development set, is chosen to be the
final force-aligned neural network, called FA (FA1 or FA2 in the
case of experiment 1 or 2 respectively) and is finally evaluated
with the testing speech material (C1-test and C3-test for
experiments 1 and 2, respectively).

4.5 Recognition
For recognition of an utterance, PLPCs+MFCCs vectors are
computed in the same way as for training. These vectors are input
to the neural network, which computes for each frame the
probabilities that the current frame contains each of the specified
categories. As illustrated in Figure 1, the result of classification is
therefore a C x F matrix of probabilities, where C is the number
of categories and F is the total number of frames. This matrix is
then used by a Viterbi search algorithm to determine the most
likely sequence of words. The Viterbi search uses minimum and
maximum durations of each category to constrain the possible
word choices, but these are not "hard" limits. If the duration of a
hypothesized category falls beyond one of the specified limits, a
penalty is applied; this penalty is proportional to the time
difference between the specified limit and the hypothesized
duration. Initial values for these limits are taken from the

durations of the categories that were used to train the baseline
network. These values are refined during the development stage
by taking durations of the categories that were created during
forced alignment.

4.6 Testing
The described recognition strategy is applied in exp1 with the
subset of C1 allocated for testing, while in experiment 2 the
testing material C3 refers to the true telephone PANDA-CSELT
corpus.

4.7 Forward Backward training
For exp2, the 'forward-backward' (fb) training strategy [2] was
applied in order to explore the possibility to further improve the
recognition results. Like most of the other hybrid systems, the
neural network in this system is used as a state emission
probability estimator. A three-layer fully connected neural
network was used, with the same configuration as that of the
baseline and forced-aligned neural networks and the same output
categories. Unlike most of the existing hybrid systems which do
not explicitly train the within-phone relative likelihoods, this new
hybrid trains the within-phone models to probability estimates
obtained from the forward-backward algorithm, rather than
binary targets.  This new configuration was called Forward-
Backward (FB) neural networks. To start FB training for exp2
(FB2), an initial binary-target neural network is required. For this
initial network, we used the network resulting from forced-
alignment training (FA2). Then the forward-backward re-
estimation algorithm is used to regenerate the targets for the
training utterances. The re-estimation is implemented in an
embedded form, which concatenates the phone models in the
input utterance into a "big" model and re-estimates the
parameters based on the whole input utterance. The networks are
trained using the standard stochastic back-propagation algorithm,
with mean-square-error as the cost function.

5. RESULTS

5.1 Experiment 1
In the first experiment the baseline network is found using
speech material sets belonging to the clean SPK-IRST (C1)
corpus as indicated in Table 4. Corresponding recognition results
are shown in Table 5.

training hand-labeled section of C1-train
(3/5 of  SPK-IRST clean)

development 1/5 of C1-train
testing 1/5 of C1-train

Table 4. Training, development and testing sets for baseline
network in exp1.

B1 Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

WrdAcc
%

SntAcc
%

dev 20 1720 3120 0.22 0.00 0.16 99.62 99.30
test 20 1720 3120 0.13 0.06 0.16 99.65 99.42

 Table 5. Baseline recognition results for exp1.

Training, development, and testing sets referring to the force
aligned network for exp1 are illustrated in Table 6, while
corresponding recognition results are shown in Table 7.



training C1-train (force aligned with B1)
development 1/5 of C1-train

testing 1/5 of C1-train
Table 6. Training, development and testing sets for force-aligned

network in exp1.

FA1 Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

WrdAcc
%

SntAcc
%

dev 38 1720 3120 0.16 0.00 0.03 99.81 99.65
test 38 1720 3120 0.16 0.10 0.10 99.65 99.53

Table 7. Force-aligned recognition results for exp1.

5.2 Experiment 2
In the second experiment the baseline network is found using
speech material sets belonging to the band-filtered version of
SPK-IRST (C2) as indicated in Table 8. Corresponding
recognition results are shown in Table 9.

training hand-labeled section of C2
10 speakers, 1/4 of  band-filtered SPK-IRST

development 30 speakers, 3/4 of C2
testing C3  (PANDA-CSELT)

Table 8. Training, development and testing sets for baseline
network in exp2.

B2 Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

WrdAcc
%

SntAcc
%

dev 29 4950 8800 0.26 0.10 0.10 99.53 99.29
test 29 990 15483 3.44 4.04 0.67 91.86 51.11

 Table 9. Baseline recognition results for exp2.

Training and development sets referring to the force aligned and
to the forward-backward networks for exp2 are illustrated in
Table 10, while corresponding recognition results are shown in
Table 11.

training C2 (force aligned with B2)4

development C3  (PANDA-CSELT)
Table 10. Training and development sets for force-aligned and

forward-backward networks in exp2.

FA2 Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

WrdAcc
%

SntAcc
%

dev 22 990 15483 2.98 4.31 0.50 92.21 55.15

FB2 Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

WrdAcc
%

SntAcc
%

dev 21 990 15483 2.42 4.56 0.47 92.55 53.74

Table 11. Force-aligned and forward-backward recognition
results for exp2.

6. DISCUSSION
Very good results have been obtained for a speaker-independent
continuous digit recognition task (exp1) in a clean environment.
Encouraging results have been achieved on a similar task using
the same clean corpus for training but a much more difficult
telephone-band environment for testing (exp2), suggesting the
effectiveness of the CSLU Toolkit in building real-life speech
recognition systems. Currently we are extending this work by
adopting two true telephone-band corpora for training the system,
in order to cover more ’real life’ complications, such as those
encountered in the testing C3 corpus, and we are very confident
that results will be highly improved.  Once the development set

results have reached an acceptable level, we will perform final
test-set results with the FB network.  To compensate for the noise
effects, methods based on spectral subtraction can also be applied
[12]. This consists of subtracting a spectral estimate of the noise
from each short time speech spectrum, but, due to the noise
variability across different telephone calls, the noise estimate has
to be updated during each call.
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NOTES
1. The CSLU Toolkit is freely available for non-commercial use and

may be downloaded from http://cslu.cse.ogi.edu/toolkit.
2. The isolated part of the whole SPK corpus, containing isolated

digits collected from 100 speakers, is released on a CD-ROM by
ELRA [4].

3. The SPHERE software package is public domain and the source
code is available by anonymous ftp from:
ftp://jaguar.ncsl.nist.gov/pub/sphere_2.6a.

4. In the case of experiment 2, the force-alignment is executed on the
whole C2 (SPK-IRST band-filtered).
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