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ABSTRACT
The development of a speaker independent “general purpose”
phonetic recognizer for Italian is described. The CSLU Toolkit
was used to develop and implement the system. The recognizer,
based on a frame-based hybrid HMM/ANN architecture trained
on context-dependent categories to account for coarticulatory
variation, recognizes 38 different phonemes (not including
silence or closures), and can distinguish between stressed and
unstressed vowels as well as open and closed vowels. The
APASCI corpus, containing nearly 2500 sentences read by 100
speakers, where the sentences have been designed to maximize
the number of phonemes occurring in different contexts, was
used for training and testing. As of the time of this writing, a
phoneme-level accuracy of 82.90% on the development set and
of 80.53% on the test set has been obtained. This level of
accuracy is much greater than on a similar English-language
corpus (with state-of-the-art performance of slightly better than
70%) and it represents the best performance obtained so far on
this corpus.

1. INTRODUCTION
In many tasks a speaker-independent domain-specific
vocabulary (such as “collect call”, “calling card”, “operator”, or
“help”) needs to be recognized. For such tasks, a general-
purpose (gp) recognizer that is capable of recognizing all
permissible phoneme strings in a language is required.
Moreover, such a recognizer would be of great help in
supporting research and development of new spoken dialogue
systems and to exploit new dialogue strategies by the use of
specific software such as the Rapid Application Developer
included in the CSLU Speech Toolkit [1]

2. CSLU SPEECH TOOLKIT
The recognizer being described in this work was developed and
implemented by the use of the CSLU Speech Toolkit [1]. Since
the CSLU Toolkit has been described in several recent articles
[1, 2, 3, 4] and is available through the CSLU OGI Web site [5],
we limit our discussion to only a brief overview of the main
toolkit components. The CSLU Speech Toolkit is a
comprehensive set of tools and technologies for learning about,
researching and developing interactive language systems and
their underlying technologies. The Toolkit supports real-time
interactive dialogues on standard off-the-shelf PC platforms
running Windows (a Linux version will be available soon). It

provides a modular, open architecture supporting distributed,
cross-platform, client/server-based networking. This flexible
environment makes it possible to easily integrate new
components and to develop scalable, portable speech-related
applications. The components of the Toolkit include both
neural-network and HMM-based speech recognition systems, a
natural-language semantic parser called PROFER [6], the
Festival text-to-speech system [7], an anatomically accurate
talking face called Baldi [8], and software for recording,
displaying, labeling, and manipulating speech. The Toolkit also
includes a GUI-based application developer called RAD and the
documentation required to train HMM and neural-network
based recognizers. The tools are designed to enable
inexperienced users to rapidly design, test and deploy spoken
language systems. In addition to the pre-existing components,
users can write their own C-level or script code for tools.
Because the Toolkit is portable, runs on affordable off-the-shelf
computing platforms, and provides both the knowledge
(tutorials) and resources needed to conduct research, it removes
some of the main entry barriers that currently prevent
universities and research laboratories from establishing new
programs in human language technology.

3. RECOGNITION FRAMEWORK
The basic framework for the CSLU Speech Toolkit's hybrid
HMM/ANN speech recognition systems is illustrated in Figures
1 and 2.  These systems use features that represent the spectral
envelope (warped to emphasize the perceptually relevant aspects
[9]) and its energy given a fixed window size. These spectral
features are computed at every 10-msec frame in the utterance
and are input to the neural network for classification.  The
neural network receives not just the features for a given frame,
but a set of features for the given frame and a fixed, small
number of surrounding frames. This “context window” of
features is used to provide the network with information about
the dynamics of the speech signal. At each frame, the neural
network classifies the features in the context window into
phonetic-based categories, estimating the probabilities of each
category being represented by that set of features. The result of
the neural network processing is a CxF matrix of probabilities,
where C is the number of phonetic-based categories, and F is the
number of frames in the utterance. The word or words that best
match this matrix of probabilities is determined using a Viterbi
search, given the vocabulary and grammar constraints. The
search is usually thought of as traversing a state sequence
(illustrated in Figure 2 with a simple two-word vocabulary),



where each state represents a phonetic based category, and there
are certain probabilities of transitioning from one state to
another.

Figure 1. Graphical overview of the recognition process,
illustrating recognition of the word “two”.

Figure 2. HMM state sequence for a two-word vocabulary.

The major difference between this framework and standard
HMM systems is that the phonetic likelihoods are estimated
using a neural network instead of a mixture of gaussians.  Using
a neural network to do this estimation has the advantage of not
requiring assumptions about the distribution or independence of
the input data, and neural networks easily perform
discriminative training [10]. Also, neural networks can be used
to perform recognition much faster than standard HMMs. A
second difference is in the type context-dependent units.
Whereas standard HMMs train on the context of the preceding
and following phonemes, our system splits each phoneme into
states that are dependent on the left or right context, or are
context independent.

4. CORPUS
The Acoustic-Phonetic and Spontaneous Speech Corpus of
IRST  (APASCI) [11] distributed by ELRA [12] was used for
training, development, and testing the general purpose Italian
phonetic recognizer. The APASCI  corpus was designed and
collected at the Istituto per la Ricerca Scientifica e Tecnologica
(ITC/IRST - Trento, Italy). This acoustic-phonetic corpus
contains Italian read utterances acquired from 100 speakers, 50
females and 50 males. Most of the speakers are from the North-
East of Italy. Recordings were performed in a quiet room.
Speech was acquired at 48 kHz, with 16 bit accuracy, by means
of a digital audio Tape-Recorder Sony TCD-D10PRO and a

super-cardioid microphone Sennheiser MKH 416-T. Then
digital recordings were downsampled  to 16 kHz and speech
waveform files  (files with extension ".wav") were stored  in  the
SPHERE format [13]. To reduce frequency components under
50 Hz, each signal in the corpus was also high-pass filtered. An
artificial grammar was used to randomly generate several
sentences, starting from a vocabulary formed by the 1000 most
frequent Italian words and other words covering a large variety
of phonetic contexts. The choice of grammar ensured that the
sentences were syntactically correct, even if often meaningless.
A sub-optimal procedure was then used to select a subset of
sentences having a good phonetic and "diphonic" coverage. In
this way phonetic coverage, in terms of a given number of
occurrences, was ensured for the Italian phonemes and pairs of
phonemes. Time-aligned phonetic and word transcriptions are
provided for each utterance in the corpus. Phonetic
transcriptions are given in terms of the Speech Assessment
Methods Phonetic Alphabet (SAMPA) [14]. Time-aligned
phonetic and word transcriptions were automatically produced
by the use of a context-independent continuous density Hidden
Markov Model (HMM) automatic speech recognizer and were
checked manually.

5. EXPERIMENT
5.1 Acoustic units

The recognizer uses a frame-based hybrid HMM/ANN
architecture trained on context-dependent categories to account
for coarticulatory variation, recognizes 38 different Italian
phonemes (not including silence or closures), and can
distinguish between stressed and unstressed vowels as well as
open and closed vowels. A three-layer neural network was
trained to estimate, at every 10-msec frame, the probability of
545 context-dependent phonetic categories. These categories are
created by splitting each phoneme, as illustrated in Table 1, into
one, two, or three parts, depending on the length of the phoneme
and how much the phoneme was thought to be influenced by
coarticulatory effects.

Acoustic units parts description
.pau 1 silence

i e E a O o u 3 unstressed vowels
 ii ee  EE aa OO oo uu 3 stressed vowels
pcl bcl tcl dcl kcl gcl 1 closure

p b t d k g r plosive
ts dz dZ tS 2 affricate

s z f v S 2 fricative
m n N 2 nasal
l r L 2 liquid
j w 2 glide

@sch 2 schwa

Table 1. Acoustic units (SAMPA, except closures) and number
of parts to split each unit into, for the Italian “general purpose”
recognizer (r means “right dependent unit”).

Phoneme states were trained for different preceding and
following phonetic contexts, and some phonetic contexts were
grouped together to form a broad-context grouping. The broad-
context groupings were done based on acoustic-phonetic
knowledge.



Group Acoustic units in group Description
$sil .pau  .garbage silence
$fnt i ii e ee j front
$mid E EE a aa @sch mid
$bck O OO o oo u uu w back
$lab p b f v m pcl bcl labial
$alv t d ts dz s z n tcl dcl alveolar
$pal dZ tS S N L palatal
$vel k g kcl gcl velar
$lat l lateral
$ret r retroflex

Table 2. Groupings of acoustic units into clusters.

5.2 Feature extraction

As for feature extraction, 13 MFCC [9] features (12 cepstral
coefficients and 1 energy parameter) plus their delta values are
continuously computed with a 10-msec frame rate. Cepstral-
mean subtraction (CMS) [15] was performed, with the mean
computed using all frames of data. The input to the network
consisted of the features for the frame to be classified, as well as
the features for frames at -60, -30, 30, and 60 msec relative to
the frame to be classified (for a total of 130 input values).

5.3 Training strategy

Neural-network training was done with standard back-
propagation on a fully connected feed-forward network. The
training was adjusted to use the negative penalty modification
proposed by Wei and van Vuuren [16]. With this method, the
non-uniform distribution of context-dependent classes, that is
dependent on the order of words in the training database, is
compensated for by flattening the class priors of infrequently
occurring classes. This compensation allows better modeling for
an utterance in which the order of the words can not be
predicted.

5.4 Duration constraints

Transition probabilities were set to be all equally likely, so that
no assumptions were made about the a priori likelihood of one
category following another category. In order to make use of a
priori information about phonetic durations, and to minimize the
insertion of very short words, the search was constrained by
specifying minimum duration values for each category, where
the minimum value for a category was computed as the value at
the second percentile of all duration values. During the search,
hypothesized category durations less than the minimum value
were penalized by a value proportional to the difference between
the minimum duration and the proposed duration. The grammar
allowed any phoneme in any order, with optional silence
between phonemes.

5.5 “Baseline”

The system was trained, developed and tested with the APASCI
corpus. In particular, 1250 hand-labeled sentences were used for
training, 105 were considered for the development stage and
715 for the test phase. The training data were searched to find
all the vectors of each category in the hand-labeled training

section of APASCI. The neural network was trained using the
back-propagation method with 130 inputs, 250 nodes in the
single hidden layer, and one node for each context-dependent
category in the output layer (for a total of 545 output nodes).
Training was done for 45 iterations, and the “best” network
iteration (“baseline” network - B) was determined by phone-
level evaluation on the APASCI development-set data.

5.6 “Forced alignment”

Each waveform in the same hand-labeled APASCI training set
was then recognized using this B network, with the result
constrained to be the correct utterance.  This process, called
“forced alignment”, was used to generate time-aligned category
labels. These force-aligned category labels were then used in a
second cycle of training, which was done again for 45 iterations,
and evaluation was repeated to determine the final network
(“force aligned” network - FA), which was finally evaluated
with the APASCI testing speech material.

5.7 “Forward Backward” training

In order to explore the possibility to further improve the
recognition results, the “forward-backward” (FB) training
strategy could be [17] applied. Like most of the other hybrid
systems, the neural network in this system is used as a state
emission probability estimator. A three-layer fully connected
neural network can be conceived, with the same configuration as
that of the baseline and forced-aligned neural networks and the
same output categories. Unlike most of the existing hybrid
systems which do not explicitly train the within-phone relative
likelihoods, this new hybrid trains the within-phone models to
probability estimates obtained from the forward-backward
algorithm, rather than binary targets. To start FB training an
initial binary-target neural network is required. For this initial
network, the best network resulting from forced-alignment
training (FA) should be used. Then the forward-backward re-
estimation algorithm could be used to regenerate the targets for
the training utterances. The re-estimation can be implemented in
an embedded form, which concatenates the phone models in the
input utterance into a "big" model and re-estimates the
parameters based on the whole input utterance. The networks
would be trained using the standard stochastic back-propagation
algorithm, with mean-square-error as the cost function.

5.8 Results

As of the time of this writing, two of the three stages have been
completed: baseline and force alignment training. As illustrated
in Table 3, phoneme-level accuracy of 82.90 and 80.53% on the
APASCI development and test set respectively has been
obtained.

Itr
#

Snts
#

Wrds
#

Sub
%

Ins
%

Del
%

PhnAcc
%

dev 24 105 5235 10.41 2.56 4.45 82.90
test 24 715 36439 11.97 3.24 5.12 80.53

Table 3. Recognition performance in terms of phone accuracy
for the development and test set.

This level of accuracy is much greater than on a similar English-
language corpus (with state-of-the-art performance of slightly



better than 70%) and it represents the best performance obtained
so far on this corpus, with no grammar and no phonotactic
constraints. In fact, the performance obtained so far by IRST on
an extended version of the same APASCI corpus [18] range, at
the phone level, from 71.34% to 79.04%, while considering
context-independent units (CIUs) and from 75.38% to 76.60%
with Syllable-type units (SUs). When context-dependent units
(CDUs) were considered, results were slightly better than ours,
ranging from 81.36% to 82.44%. However in this case, in
contrast with our present implementation, phonotactic
constraints were introduced in order to inhibit the recognition of
unit sequences having incompatible contexts and this, according
to the authors, improved accuracy from 2% to 3% depending on
the particular unit set. Moreover in this case a very complex and
sophisticated HMM system, with 16 gaussian mixtures per state
and a large number (from 337 to 849) of context-dependent
states was used in comparison to the rather straightforward
architecture of the system being described in this work.

6. CONCLUSIONS

High performance recognition accuracy was achieved with two
out of three training stages (B, FA) on the APASCI corpus. The
third stage of training is currently under development, and test-
set evaluation of the system will be subsequently performed.
The current-best recognizer was implemented in the Toolkit’s
dialogue design module and a simple Italian-language
demonstration program that accepts menu orders from a user has
been created. This demonstration system was installed on a
laptop machine and was successful in informal presentations.
The present Italian “general purpose” recognizer will be
included in the next version of the CSLU Speech Toolkit.
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