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ABSTRACT
This paper describes a set of experiments on neural-network
training and search techniques that, when combined, have
resulted in a 54% reduction in error on the continuous digits
recognition task.  The best system had word-level accuracy of
97.52% on a test set of the OGI 30K Numbers corpus, which
contains naturally-produced continuous digit strings recorded
over telephone channels.  Experiments investigated effects of
the feature set, the amount of data used for training, the type of
context-dependent categories to be recognized, the values for
duration limits, and the type of grammar.  The experiments
indicate that the grammar and duration limits had a greater
effect on recognition accuracy than the output categories,
cepstral features, or a 50% increase in the amount of training
data.

1. INTRODUCTION
The recognizers in the CSLU Toolkit use a hybrid HMM/ANN
framework [1].  In these systems, frame-based recognition is
done with context-dependent sub-phonetic states, where the
state probability estimation is computed using a neural network.

We have developed a set of procedures within the Toolkit for
training special-purpose recognizers for tasks such as
continuous digit recognition.  This method is simple enough
that a bright high-school student can complete the tutorial in a
few days.  On the continuous digits task, the training procedure
yields recognition results that compare favorably to standard
HMM systems [1]. This paper shows how competitive
performance was achieved by optimizing several of the
parameters used in training and incorporating new training
techniques.

2. CORPUS
The OGI 30K Numbers corpus [2] was used for training,
development, and testing.  The data in this corpus were
collected from thousands of people within the United States
who recited their telephone number, street address, zip code, or
other numeric information over the telephone in a natural
speaking style.  Because the data were collected from a large
number of speakers from different backgrounds in different
environments, the corpus contains a noticeable amount of breath

noise, glottalization, background noise (including music), and
other “real-life” complications.  Of almost 15,000 utterances,
approximately 6600 utterances have been transcribed and time-
aligned at the phonetic level by professional labelers. For the
experiments reported here, we used only those utterances that
consist entirely of digits (zero through nine and “oh”). Before
separating the data into training, development, and test sets,
about 5% of the corpus was culled for independent testing and
set aside.   Three speaker-independent partitions were created
from the remaining data: 3/5 for training (6087 files, of which
2547 were hand-labeled), 1/5 for development (2110 files), and
1/5 for testing (2169 files). The development partition was
further split into five sets, and the development results reported
in this paper are for the first of these five sets (423 files).

3. BASELINE SYSTEM
The baseline system was trained using approximately the same
method and parameters as the digits recognizer in the March
1998 release of the Toolkit.  For training the baseline system,
hand-labeled phonetic symbols are mapped, if necessary, to a
consistent set of symbols for each word, /oU 9r/ (in “four”) is
merged into one />r/ phone, and /kh s/ (in “six”) is merged into
one /ks/ phone.  (Phonetic symbols are written in Worldbet).

The system is trained to recognize context-dependent units. For
left and right contexts, pauses and stop closures are mapped to
the symbol /uc/ (unvoiced closure), and dentals (/th/, /s/, and the
right half of /ks/) are mapped to the broad-category symbol
/den/; otherwise the contexts are phoneme-specific.  Each
phoneme can be split into one, two, or three parts. The left part
is dependent on the context of the preceding phoneme (or
phonetic broad category), the center part (if any) is context
independent, and the right part is dependent on the following
phoneme (or phonetic broad category).  Phonemes that remain
as a one-part phoneme can either be context-independent or be
dependent on the following phoneme.

The system is trained using 13 MFCC features (12 cepstral
coefficients and 1 energy parameter) plus their delta values,
with a 10-msec frame rate.  The input to the network consists of
the features for the frame to be classified, as well as the features
for frames at -60, -30, 30, and 60 msec relative to the frame to
be classified (for a total of 130 input values). As many as 2000
samples per category are collected for training.  Neural-network
training is done with standard back-propagation on a fully-



connected feed-forward network. The training is adjusted to use
the negative penalty modification proposed by Wei and van
Vuuren [3].  With this method, the non-uniform distribution of
context-dependent classes that is dependent on the order of
words in the training database is compensated for by flattening
the class priors of infrequently occurring classes; this
compensation allows better modeling for an utterance in which
the order of the words can not be predicted.

During the Viterbi search, transition probabilities are set to be
all equally likely, so that no assumptions are made about the
likelihood of one category following another category. The
search was constrained to minimize insertion errors by having
minimum duration values for each category, where the
minimum value for a category was computed as the value at two
standard deviations from the mean duration. During the search,
category durations less than the minimum value are penalized
by a value proportional to the difference between the minimum
duration and the proposed duration.

The grammar allows any number of digits in any order,  with an
optional silence between digits.  In addition, a “garbage” word
is allowed at the beginning and end of each utterance to account
for sounds not in the vocabulary. The “garbage” word is defined
as a word with a single context-independent category; the value
of this category is not an output of the neural network, but is
computed as the Nth-highest output from the neural network at
each frame [4].  In this study, N was set to 5.

Training is done for 30 iterations, and the “best” network
iteration is determined by word-level evaluation of each
iteration on the development set data.  This “best” network is
then used to force-align the same training utterances, and
training and evaluation are repeated to determine the final digits
network.

4. EXPERIMENTS
We evaluated several aspects of training a digit recognition
system, including the feature set, the amount of data used for
training, the type of context-dependent categories, the values for
duration limits, and the type of grammar. Each of these aspects
is described in more detail below.

4.1. Features
Ten sets of features were evaluated: 13th-order MFCC with delta
values (as used in the baseline system, referred to as
MFCC13D), 13th-order MFCC with no delta values (MFCC13),
9th-order MFCC with and without delta values (MFCC9D and
MFCC9), 13th-order and 9th-order PLP with and without delta
values (PLP13D, PLP13, PLP9D, PLP9), a combination of
13th-order PLP and 13th-order MFCC (PM13), and a
combination of 9th-order PLP and 9th-order MFCC (PM9).  All
PLP features were computed using RASTA pre-processing, and
all MFCC features were computed using CMS pre-processing.

The evaluation of the combination of PLP and MFCC features
was motivated by the hypothesis that training with the two
slightly different representations would provide somewhat more
robustness to noise, and that the combination of RASTA (which

emphasizes regions of transition) and CMS (which does not
emphasize transitions) would provide complimentary
information.  The evaluation of each type of feature with and
without delta values was motivated by the belief that the neural
networks should, in theory, be able to learn the information
provided by the delta values without having these values
provided explicitly.  Two different cepstral orders (9 and 13)
were used to test if the default value of 13 is an over-
representation of the signal; with a sampling rate of 8000 Hz,
there are on average only 4 formants, and the signal should be
adequately represented by 2 cepstral coefficients per formant
plus an additional coefficient to approximate the effect of the
glottal source.

4.2. Duration Limits
We evaluated each of the 10 recognizers trained with the
features described above using four types of duration limits:
with minimum duration values taken at two standard deviations
from the mean (the default, referred to as 2SD), from the 2nd

percentile of all duration values (2P), from the 5th percentile of
all duration values (5P), and from the 8th percentile of all
duration values (8P). The reason for selecting a minimum
duration value above the absolute minimum duration observed
in the data is to remove outliers.

The motivation for comparing the standard-deviation based
limits with the percentile-based limits was related to
assumptions about the distribution of the data. It  was thought
that although two standard deviations from the mean might be
an appropriate value if the data are normally distributed, a
percentile-based method may be a more reasonable method of
removing outliers if the data have a different distribution.

4.3. Grammar
We evaluated two types of grammars: the first allowed optional
silence between digits (the default, referred to as SIL), and the
second allowed an optional “garbage” word as well as optional
silence between digits (GAR).

The motivation for evaluating these two grammars was to test
whether the optional pauses between words are modeled
sufficiently well by the silence category, or whether a more
complex model is needed.  The risk of using the GAR grammar
was that the number of deletions would increase, by having
valid words recognized as garbage. On the other hand, it was
thought that the GAR grammar might provide better modeling
of the non-speech sounds that may occur between words.

4.4. Categories
We evaluated all ten sets of features with two types of
categories: phonetic categories that are dependent on the context
of specific neighboring phonemes (the default, PHON), and
phonetic categories that are dependent on the context of broad
classes of phonemes (BC).  The PHON recognizer has 218
outputs, and the BC recognizer has 163 outputs.

The motivation for using the PHON set of categories was that
the phoneme-specific differences in a particular context may



provide additional information about the word. The motivation
for using the BC set of categories was the belief that the
phoneme-specific differences within one broad class are
minimal, and that trying to determine minor phonetic
differences in multi-speaker data might be futile.

4.5. Amount of Data
We trained all of the systems described above using as many as
2000 samples per category. For five of the ten most promising
feature sets, we trained with all available hand-labeled data. The
motivation for this comparison was to estimate the effect on
recognition performance by increasing the amount of training
data by 50%.

4.6. Evaluation Methodology
Due to the large number of possible combinations of tests, we
conducted the evaluation using the following methodology:

1. Creating the baseline system using the method
outlined in Section 3.  (We confirmed that the
results of this recognizer are comparable to the
results of the CSLU Toolkit digits recognizer.)

2. Training and evaluating the 10 sets of features
with 2000 samples per category, using the SIL
grammar and 2SD limits, the GAR grammar and
2SD limits, the SIL grammar and 5P limits, and
the GAR grammar and 5P limits.  Training was
done using the PHON set of categories.

3. Selecting the better grammar based on the
results from step 2, and evaluating the better
grammar with the remaining 2P and 8P limits.

4. Repeating steps 2 and 3 for each set of features
using the BC set of output categories.

5. Selecting the five most promising sets of
features with the best grammar, limits, and
categories, and training networks with these
features using all available hand-labeled data.

To create a final recognizer, we force-aligned all available data
with the current best recognizer, trained another system using
these force-aligned data, and then trained again using the
forward-backward method [5].  We selected the best recognizer
based on the word-level development-set results.

For evaluating the selected recognition system and the baseline
system on the test set, we computed the significance level using
McNemar’s test (at the 5% level) and confidence intervals for
both systems (at 95%). For computing the confidence intervals,
we divided the test set into ten subsets (with approximately 217
digit strings per subset) and determined the recognition
accuracy on each of these subsets.

5. RESULTS
The baseline system that we trained had word-level accuracy of
94.54% and sentence-level accuracy of 80.61%, which is

comparable to the performance of the digits recognizer in the
March 1998 release of the CSLU Toolkit, with 94.63% word
accuracy and 82.27% sentence accuracy. The sentence-level
results are not significantly different at the 5% level (P=0.44).

It can be seen in Figure 1 that the GAR grammar did better than
the SIL grammar with the SD2 limits as well as with the 5P
limits, so GAR was chosen as the best grammar.  The duration
limits for the 2P, 5P, 8P, and 2SD conditions using the GAR
grammar are shown in Figure 2; it can be seen that the
difference between the 2P and 5P results depends on the feature
set, but that the 2P and 5P results are usually better than the 8P
results and almost always noticeably better than the SD results.
As a result, the 2P limits were chosen.
Figure 1: Word-level accuracy results for each of the 10
features using the four initial grammar and duration-limit

combinations. The horizontal axis codes are explained in
Section 4.1 The black bar is for the SIL grammar and 2SD
limits, the white bar is for the GAR grammar and 2SD limits,
the dark-gray bar is for the SIL grammar and the 5P limits, and
the light-gray bar is for the GAR grammar and the 5P limits.
Figure 2: Word-level accuracy results for the same 10 feature
sets as in Figure 1,  using the four types of duration limits with

the GAR grammar and the PHON output categories. The black
bar is for the 2P limits, the white bar is for the 5P limits, the
dark-gray bar is for the 8P limits, and the light-gray bar  is for
the 2SD limits.

The recognizers trained with the BC categories (162 outputs)
had results similar to the recognizers trained using the PHON
categories (218 outputs), but the PHON results had, on average,
a 4% reduction in error.  Figure 3 shows a comparison of the
BC and PHON results for the GAR grammar and 2P limits.

The recognizers trained using all available data instead of 2000
samples per category had, on average, a 3.2% reduction in error.
The increase in the amount of training data was 52.2%.
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Figure 3: Word-level accuracy results for the same 10 feature
sets as in Figure 1 (using the GAR grammar and 2P limits),
comparing the BC categories (dark bar) and PHON categories
(light bar).

Given these results, the best set of  parameters was determined
to be the GAR grammar that allows optional garbage between
words, the 2P duration limits (which are computed from the 2nd

percentile of duration values), the use of all available data, the
PHON set of phoneme-specific categories, and 13th order
MFCC coefficients with their delta values. The system trained
with these features on all available hand-labeled data had
97.15% word accuracy and 89.13% sentence accuracy on the
development set.

The development-set results from forced-alignment training
were 97.68% (word) and 90.07% (sentence).  Finally, the results
from forward-backward training were 98.22% (word) and
91.96% (sentence).

The results of test-set evaluation are summarized in Table 1.
The 90.36% sentence-level result on 2169 files (12437 words)
is significantly better than the 80.08% baseline results, and the
confidence interval is ±0.45% for the new recognizer and
±0.73% for the baseline recognizer.

System Word
Accuracy

Sentence
Accuracy

Confidence
Interval

Reduction
in Error

Baseline 94.65% 80.08% 94.65±0.73% n/a
New 97.52% 90.36% 97.52±0.45% 54%

Table 1: Test-set results for the baseline system and the new
system, where the new system was trained with the set of best
parameters as determined from the experiments in this paper.
Evaluation was done on 2169 utterances (12437 words).

The results indicate that changing the duration limits and
grammar had the greatest effect on recognizer performance, and
forced alignment of all data and forward-backward training had
the second-greatest effect. The use of all available hand-labeled
data, the type of categories, and the choice of features yielded
smaller improvements.  For the choice of features, the use of
delta parameters and the use of 13 cepstral coefficients yielded a
typically consistent, small improvement over the use of no delta
features or 9 coefficients.  The combination of PLP and MFCC
features did not yield a noticeable improvement over the use of
delta features with MFCC or PLP alone.

6. DISCUSSION
In these experiments, it was found that the grammar and
duration limits had a greater effect on recognition accuracy than
the output categories, cepstral features, or a 50% increase in the
amount of training data.  Despite theoretically-motivated beliefs
to the contrary, the use of delta features and 13 cepstral
coefficients usually did improve performance.

It is hypothesized that the reason for the PLP results being
consistently slightly worse than the MFCC results is that the
CMS subtraction was not pipelined, and therefore was able to
use more data for noise compensation than the RASTA method.
For implementing a real-time system, the pipelined CMS may
yield results that are more similar to, or possibly worse than,
RASTA results.

Finally, it should be noted that the run-time complexity of the
final system is the same as for the baseline system (both run in
approximately real-time).  Training time has been increased,
simply because more training data is used for forced alignment
and the forward-backward method requires another cycle of
network training.

For those who would like to replicate our results or try further
experiments, both the Numbers corpus and the CSLU Toolkit
can be downloaded from http://cslu.cse.ogi.edu/Toolkit (free for
academic use).
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