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ABSTRACT

This paper describes a series of experiments that
compare different approaches to training a speaker-
independent continuous-speech digit recognizer using the
CSLU Toolkit. Comparisons are made between the
Hidden Markov Model (HMM) and Neural Network
(NN) approaches. In addition, a description of the CSLU
Toolkit research environment is given.
The CSLU Toolkit is a research and development
software environment that provides a powerful and
flexible tool for creating and using spoken language
systems for telephone and PC applications. In particular,
the CSLU-HMM,  the CSLU-NN, and the CSLU-FBNN
development environments, with which our experiments
were implemented, will be described in detail and
recognition results will be compared.
Our speech corpus is OGI 30K-Numbers, which is a
collection of spontaneous ordinal and cardinal numbers,
continuous digit strings and isolated digit strings. The
utterances were recorded by having a large number of
people recite their ZIP code, street address, or other
numeric information over the telephone. This corpus
represents a very noisy and difficult recognition task.
Our best results (98% word recognition, 92% sentence
recognition), obtained with the FBNN architecture,
suggest the effectiveness of the CSLU Toolkit in
building real-life speech recognition systems.

1. INTRODUCTION

Since the early nineties, the Center for Spoken Language
Understanding (CSLU) has been working on the
development of new tools for creating spoken language
systems. The result of this effort is the CSLU Toolkit, an
integrated set of software and documentation that
represents the state of the art in tools for research,
development, and learning about spoken language
systems [1]. The CSLU Toolkit is freely available for
non-commercial use and may be downloaded from
http://cslu.cse.ogi.edu/toolkit.

Usually, the development of spoken language systems is
a lengthy and expensive process requiring months or
even years to design, test, and deploy systems for useful
applications.  With the help of the Toolkit, an increasing
number of inexperienced users are able to rapidly
prototype, test, and deploy spoken language systems, and
experienced researchers are provided with an
environment for performing research and for testing and
showcasing research advances.
In the following sections, a brief description of the
Toolkit is given1, implementations of a speaker-
independent continuous-speech digit recognizer using
three different architectures are described, and finally,
the recognition results obtained by applying these
recognizers to the OGI 30K-Numbers corpus [2] are
compared.

2. CSLU TOOLKIT

The CSLU Toolkit has been developed to support
speech-related research and development activities for a
wide range of users and uses. Among various other
topics, the Toolkit is designed to:

• enable domain experts, who may be naive about
spoken language technology, to rapidly design
spoken language systems for real applications, even
in languages other than English, with easy-to-use
authoring tools;

• generate state-of-the-art spoken language systems
automatically from high level design specifications;

• learn about spoken-dialogue systems through
coursework incorporated into the tools;

• easily     perform   research   on   human   computer
  interaction in many tasks using spoken-dialogue

systems;
• perform research on the underlying technologies,

and incorporate research advances into working
systems for evaluation in real applications.

                                                          
1 For a more detailed description see the www on-line
Toolkit manual at http://cslu.cse.ogi.edu/toolkit.



This toolkit is a comprehensive software environment
that integrates a set of core technologies including speech
recognition, speech synthesis, and facial animation. It
also features authoring and analysis tools that enable
quick and easy development of desktop and telephone-
based speech applications. The architecture of the
Toolkit, as shown in Figure 1, has three main
components: a set of libraries containing core technology
modules specific to speech recognition, speech synthesis
and facial animation, an interactive programming shell
(CSLUsh [3]) and a graphically-based Rapid Application
Developer environment (RAD).

Figure 1.  Architecture of the CSLU Toolkit

2.1 Core Technology Modules

The core of the Toolkit consists of a set of modules that
implement technology fundamental to all aspects of
speech recognition, speech synthesis, and facial
animation. These modules are written in C and form an
application programming interface (API) that is
independent of hardware and operating systems. The
modules contain routines useful for signal processing,
training Neural Networks (NN) and Hidden Markov
Models (HMM), pipelined speech recognition with a
Viterbi search, a telephone interface, and a vendor-
independent text-to-speech interface. The modules
provide a good deal of flexibility since they can be
linked directly into a C program or individually loaded
into a programming shell as needed.

2.2 CSLUsh: programming shell

The main application level of the Toolkit is an interactive
Tcl/Tk-based [4] programming shell called CSLUsh
(pronounced "slush"). CSLUsh incorporates the core
technology modules (described in the previous section)
with the well-known, freely available and widely ported
Tcl/Tk scripting language. The functionality of each C-
API is made available as a scripting command via a
standardized calling convention and data are referenced
as objects that can travel a network and can be saved to
disk in a device-transparent way.  The code that
implements this consistent interface is made available to
allow for extension of both the underlying C-API and
additional `glue' functionality that may be lacking. An
application is built by gluing together the modules based
on the C-API and using additional application functions
such as an event loop servicing file events, network
events, and graphical user interface events. The
application can be run across multiple platforms
connected on a local LAN or the Internet by using the
client-server capabilities built into the Tcl application
interface. This includes TCP, UDP, the ability to run as a
daemon, remote execution of Tcl scripts, and transfer of
data objects.
The C-API modules are grouped into functional libraries
that are dynamically linked and loaded at run time,
allowing the application to scale in terms of resources. In
addition, it allows for the extension of the Toolkit
without changing the Toolkit itself.

2.3 RAD: Rapid Application Developer

The third component of the Toolkit is a Rapid
Application Developer environment called RAD. RAD
seamlessly integrates speech recognition, speech
synthesis, facial animation and visualization tools into a
graphical-based authoring environment for building and
executing simple spoken language systems. RAD
includes a palette of graphical dialogue objects and a
simple drag-and-drop interface. The dialogue objects
serve as visual-programming building blocks. During the
design phase, the author selects and arranges appropriate
objects, linking them together to create a finite-state
dialogue model. Then, during the run phase, RAD
provides a real-time animated view of the dialogue. The
author can alternate between the design and run phases,
enabling the incremental development and iterative
refinement of spoken language systems. The set of
objects in the palette covers a range of fundamental
spoken language system functions including answering
the telephone, speaking a prompt, recording speech
input, recognizing speech input, and identifying
telephone touch-tone input (DTMF).
The interface is designed to require minimal technical
expertise on the author's part and to simplify the
specification process. For example, specifying a speech
recognizer is as simple as typing in the words or phrases
to be recognized. Similarly, the computer’s speech
output is specified by typing in words for the system to
speak or by attaching a recorded voice.  The animated



face, Baldi, is automatically synchronized with either
synthetic or recorded speech.  At installation time, RAD
is fully integrated into the local environment. After
designing a speech application, the user selects from a
list of input devices, which can include a microphone or
telephone. Then the user presses the ''Build'' button
followed by the "Run'' button and the system executes.
RAD inherits the power and flexibility of the underlying
programming environment through its foreign code
feature, enabling authors to create sophisticated
applications that execute programming commands from
within RAD. As authors become more experienced and
familiar with the underlying programming environment,
they can move beyond the scope of RAD's initial set of
functions to build speech front-ends for existing
applications such as voice handling of e-mail.

3. CSLU-ASR DEVELOPMENT ENVIRONMENT

Three different development environments are available
for training speech recognition systems using state-of-
the-art techniques.  The first environment, CSLU-HMM,
is used for developing Hidden Markov Model (HMM)
recognizers. The second environment, CSLU-NN, is
used to develop neural-network-based (NN) recognizers.
The third environment, CSLU-FBNN, is an extension of
the CSLU-NN environment that allows training neural-
network recognizers with the forward-backward
algorithm (FBNN) [5].   These three environments are
referred to collectively as the CSLU-ASR development
environment. They are designed as extensions to the
CSLU shell (CSLUsh) and use a wide variety of pre-
existing modules for distributed computing, speech
signal processing, mathematical operations, and various
miscellaneous modules to provide a complete recognition
development environment.

As shown in Figure 2, the complete CSLU-ASR
development environment is a collection of modular
building blocks which aim to provide the user with an
easy to use, powerful research and development
environment.

Figure 2. Architecture of the CSLU-ASR development
environment comprising HMM, NN and FBNN tools.

Based on CSLUsh, which uses Tcl/Tk to provide a
scripting environment, CSLU-ASR provides a flexible
environment in which the user can shape the existing
modules to meet specific needs. Implemented in Tcl/Tk
and C, these development tools support a flexible
environment for various modeling strategies. Great care
was taken to design all of the core components to operate
in as efficient and consistent a manner as possible, with
special attention given to modularity, portability and
extendibility.

3.1 CSLU-NN Development Environment

This tool contains various Tcl/Tk and C functions that
implement the general steps needed to create a neural-
network-based recognizer, including:

• specifying the phonetic or sub-phonetic categories
that the network will recognize;

• finding many samples of each of these categories in
the speech data;

• training a network to recognize these categories and
evaluating the network performance using a test set.

As shown in Figure 3, the recognizers that are developed
use a frame-based approach with a neural network for
estimating posterior probabilities.  The steps performed
during recognition are:

• The waveform is divided into frames;
• Features are computed for each frame. These

features describe the spectral envelope of the speech
at that frame and at a small number of surrounding
frames;

• The features in each frame are classified into
phonetic-based categories using a neural network.
The outputs of the neural network are used as
estimates of the probability, for each phonetic
category, that the current frame contains that
category;

• The matrix of probabilities and a set of
pronunciation models is used by a  Viterbi search to
determine the most likely word(s).

Figure 3. Overview of frame-based speech recognition
using neural networks.
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3.2 CSLU-HMM Development Environment

The current version of CSLU-HMM has tools for both
standard and advanced HMM training methods [6,7,8,9].
 The standard techniques such as

• model initialization using vector quantization (VQ);
• model training based on the expectation/

maximization (EM) algorithm;
• standard embedded model parameter re-estimation.

Also supported are more advanced techniques, such as:

• maximum a-posterior (MAP) training;
• maximum likelihood linear regression (MLLR).

Parameter tying may be done at either the model, state,
mixture component, mean and/or covariance levels.
Moreover, to facilitate the construction of HMM
recognizers for medium to large vocabulary tasks,
CSLU-HMM supports decision-tree state clustering.
The outline of the typical process of training an HMM
model for speech recognition is shown in Figure 4, where
for each block the associated CSLU-HMM scripts are
indicated.

Figure 4. Outline of typical HMM training.

3.3 CSLU-FBNN Development Environment

The CSLU-FBNN tool is an extension of the CSLU-NN
tool that allows the user to train neural-network
recognizers using the forward-backward procedure
commonly employed when training HMMs. A neural
network is used as a state emission probability estimator
and the conventional forward-backward algorithm is
used for estimating continuous targets for the NN
training patterns.  The network is not trained on binary
target values, but on the probabilities of each category
belonging to each frame [5].

4.  CONNECTED DIGIT RECOGNITION
EXPERIMENTS

For investigating the performance of the CSLU-ASR
development environment, three continuous-speech,
speaker-independent digit recognizers were trained using
each of the three development environments. The
recognizers were trained on telephone-band speech using
the OGI 30K-Numbers corpus [2], available from
http://www.cse.ogi.edu/CSLU/corpora/.
The performance of each recognizer was evaluated on a
development set and a test set. The digits portion of the
OGI Numbers corpus contains many thousands of
utterances of continuous and isolated (uttered with
pauses between each word) digit strings recorded by
having a large number of people recite their ZIP code,
street address, or other numeric information over the
telephone, under various conditions. As a result, many
aspects of "real-life" speech are present in the data,
including noise, widely-varying energy levels, and
dialect differences. Three-fifths of the available data
were randomly chosen and allocated (in a speaker-
independent way) for training, and one-fifth each were
allocated for development and testing.

4.1 NN experimental settings

As illustrated in Figure 3, a three-layer neural network
was trained to estimate the probability of 165 context-
dependent phonetic categories at every 10-msec frame.

4.1.1 Segmentation

For creating context-dependent categories, each
phoneme was split into one, two, or three parts,
depending on the length of the phoneme and how much
the phoneme was thought to be influenced by
coarticulatory effects.  One-part phonemes are context
independent.  Two-part phonemes have the left (first)
half dependent on the preceding phoneme and the right
(last) half dependent on the following phoneme.  Three-
part phonemes have a left third that is dependent on the
preceding phoneme, a middle third that is context
independent, and a right third that is dependent on the
following phoneme.   Phoneme states were trained for
different preceding and following phonetic contexts, and
some phonetic contexts were grouped together to form a
broad-context grouping. For example, the dental
fricatives /s/, /z/, /th/, and /T/ were combined into one
broad-context grouping, so that the left half of /I/
following /z/ was the same category as the left half of /I/
following /s/.  The broad-context groupings were done
based on acoustic-phonetic knowledge.

4.1.2 Training

As a first step in training the neural network, Perceptual
Linear Prediction [10] (PLP) features (including energy)
and Mel-Frequency Cepstrum Coefficients [11] (MFCC)
are computed at non-overlapping 10-msec frames. At
each frame, a 130 dimensional vector of PLP+MFCC

Data Preparation
(genfeat.tcl, pickdata.tcl)

Model Initialization
(hmminit.tcl)

Model Training
(hmmtrain.tcl)

Embedded Training
(genmodel.tcl, hmmembed.tcl)

Model Selection
(hmmsearch.tcl, hmmscore.tcl)

Data Preparation
(genfeat.tcl, pickdata.tcl)

Transcription
(hmmscribe.tcl)



features is constructed using five surrounding frames; we
use 13-PLP+13-MFCC features from frames at -60, -30,
0, 30, and 60 msec relative to the frame of interest.
The training data are searched to find all the vectors of
each category in the hand-labeled section of the OGI-30-
Numbers corpus. The neural network is trained using the
back-propagation method with 130 inputs, 200 nodes in
the single hidden layer, and one node for each context-
dependent category in the output layer (for a total of 165
output nodes). Training is done for 70 iterations, and the
iteration with the best performance on the development
set is chosen to be the final baseline neural network.
(This network will be referred to as network B, for
baseline.)

4.1.3 Forced Alignment

Often, the corpus we want to train on has text
transcriptions but no time-aligned phonetic labels. In this
case, we can create either phonetic labels or category
labels using a process called "forced alignment".  Forced
alignment is the process of using an existing recognizer
to recognize a training utterance, where the grammar and
vocabulary are restricted to be the correct result.  The
result of forced alignment is a set of time-aligned labels
that give the existing recognizer's best alignment of the
correct phonemes or categories. If the existing recognizer
is good, then the labels will have more consistent time
alignments than the hand labels. These labels can then be
used for training a new recognizer. Even if the existing
recognizer produces some alignment errors,  this process
can be used to determine an initial set of labeled training
data. The best network previously trained (B) is, in fact,
utilized to force align all of the training data in the OGI
30K-Numbers corpus (not all of the training set has been
phonetically hand labeled), and a new force-aligned
network is trained for 30 iterations using all of these new
phonetically labeled data. The best force-aligned network
(as evaluated on the development set) is chosen to be the
final force-aligned neural network, called FA.

4.1.4 Recognition

For recognition of an utterance, PLP+MFCC vectors are
computed in the same way as for training. These PLP
vectors are input to the neural network, which computes
for each frame the probabilities that the current frame
contains each of the specified categories. As illustrated in
Figure 3, the result of classification is therefore a C x F
matrix of probabilities, where C is the number of
categories and F is the total number of frames. This
matrix is then used by a Viterbi search algorithm to
determine the most likely sequence of words. The Viterbi
search uses minimum and maximum durations of each
category to constrain the possible word choices, but these
are not "hard" limits. If the duration of a hypothesized
category falls beyond one of the specified limits, a
penalty is applied; this penalty is proportional to the time
difference between the specified limit and the
hypothesized duration. Initial values for these limits are
taken from the durations of the categories that were used

to train the baseline network. These values are refined
during the development stage by taking durations of the
categories that were created during forced alignment.

4.2 HMM experimental settings

The same phonetic hand-labeled subset of the data used
in the previous section for training the NN digit
recognizer is used to create initial  "seed models" and
train a continuous phone-based HMM digit recognizer.
As illustrated in the example of Figure 5, each phone is
represented as a 3-state left to right model with a discrete
Gaussian mixture.

Figure 5. Example of monophone models created with
the CSLU-HMM configuration scripts. The short pause
model (/sp/) is tied to the center state of the silence
model (/sil/).

For each frame, 13 Mel-frequency cepstral coefficients
are computed every 10 milliseconds. Cepstral mean
subtraction is performed and the first and second order
time derivatives are added to the base cepstral
coefficients to form a 39-element feature vector. As in
the previous section (see 4.1.3), forced alignment is
applied to the whole training set to create new
automatically labeled data, with which retraining and
refining the initial seed models is done.
Embedded parameter re-estimation, addressing the
problem of modeling the interactions between
neighboring models (which is not addressed by single
model training) is executed, and finally evaluation is
performed on the development set. The “search build”
procedure uses a triphone lookup table to determine
which model to use during cross word expansion, thus
the expected triphone models are tied to the present
corresponding monophone model. All these steps, such
as data preparation (dividing up a corpus, word
transcription, phonetic transcription, feature extraction,

prototype mono numstate 4 mixtures 3 transp
 0.000  1.000  0.000  0.000  0.000
 0.000  0.600  0.400  0.000  0.000
 0.000  0.000  0.500  0.500  0.000
 0.000  0.000  0.000  0.600  0.400
 0.000  0.000  0.000  0.000  0.000

prototype onestate numstate 4 mixtures 3 transp
 0.000  0.500  0.500
 0.000  0.500  0.500
 0.000  0.000  0.000

define mono  <z>   <ih>    <r>   <ow>   <w>   <ah>   <n>   <t>
<uw>  <th>   <iy>    <f>  <aor>  <ay>  <v>   <s>
<ks>   <eh>   <ey>  <sil>;

define onestate <sp>

tie <sil>.state[2] <sp>.state[1]
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data selection), model training (model initialization,
single model training, forced alignment, embedded
parameter re-estimation) and evaluation are executed by
specific Tcl scripts. Results are given for the best
experimental setting, obtained with 16 Gaussian mixtures
per state.

4.3 FBNN experimental settings

Like most of the other hybrid systems, the neural
network in this system is used as a state emission
probability estimator. A three-layer fully-connected
neural network was used, with the same configuration as
the baseline and forced-alignment neural networks. The
output categories are the same as in the original NN
system. Unlike most of the existing hybrid systems which
do not explicitly train the within-phone model
transitions, this new hybrid trains the within-phone
models to probability estimates obtained from the
forward-backward algorithm, rather than binary targets.
We call this new system FBNN (Forward-Backward
Neural Networks) or NN/HMM. To start FBNN training,
an initial binary-target neural network is required. For
this initial network, we used the network resulting from
forced-alignment training (FA). Then the forward-
backward re-estimation algorithm is used to regenerate
the targets for the training utterances. The forward-
backward re-estimation is implemented in an embedded
form, which concatenates the phone models in the input
utterance into a "big" model and re-estimates the
parameters based on the whole input utterance. The
networks are trained using the standard stochastic back-
propagation algorithm, with mean-square-error as the
cost function.

5.  RESULTS

The three systems (NN, HMM, and FBNN) are evaluated
on the development set and test set randomly chosen
from the OGI 30K-Numbers corpus. (The training,
development, and test sets are all speaker-independent.)
Results are summarized in Table 1.

NN
Data Set Unit

B FA
HMM FBNN

word 97.76 97.76 96.37 97.94
Dev. Set

sentence 87.59 91.19 87.35 91.80

word 96.36 97.58 96.422 97.87
Test Set

sentence 86.82 91.03 86.08 91.77

Table 1. Word and sentence percent accuracy
recognition rates for the various systems. B is the
Baseline NN, while FA is the Force-Alignment NN.

                                                          
2 Results obtained with 16-Gaussian mixtures per state.

The FBNN performance is a 12% reduction in word-
level error compared to the FA system, and a 41%
reduction in word-level error compared to the HMM
system. These results represent the best obtained results
on the OGI-30K-Number corpus since the Toolkit was
designed.

6.  CONCLUSIONS AND FUTURE WORK

Encouraging results have been achieved on a very
difficult telephone-band digit recognition task,
suggesting the effectiveness of the CSLU Toolkit in
building real-life speech recognition systems. Currently
we are extending this work to an Italian digit corpus.
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