
AUTOMATIC RECOGNITION OF ITALIAN I-SET
BY RECURRENT NEURAL NETWORKS

P. Cosi*,  P. Frasconi**, M. Gori** and  N. Griggio***

*Centro di Studio per le Ricerche di Fonetica,
 Consiglio Nazionale delle Ricerche,

P.zza G. Salvemini, 13 - 35131 Padova (Italy).

**Dipartimento di Sistemi e Informatica,
Università degli Studi di Firenze,

Via di S. Marta, 3 - 50139 Firenze (Italy).

***Dipartimento di Elettronica ed Informatica,
Università degli Studi di Padova,

Via G. Gradenigo, 6 - 35100 Padova (Italy).

ABSTRACT

In order to prove the potential power of "learning by examples" paradigm for
problems of Automatic Speech Recognition, an experiment is described, regarding an
extremely difficult Italian phonetic recognition problem:

the automatic discrimination of the so called Italian i-set:

/bi/, /tSi/, /di/, /dZi/, /i/,  /pi/, /ti/, /vi/
plus

other two i-like stimuli /Li/, /si/.

Auditory Modeling is used as front-end digital signal processing. Semi-automatic
Multi-Level segmentation is applied to input speech stimuli. Recurrent Neural Networks
trained by Extended Back Propagation for Sequences constitute the global recognition
framework.. The achieved speaker independent mean recognition rate is around 65%
which, given the effective difficulty of the present task, can be considered quite acceptable
and promising.



INTRODUCTION

Several neural network models have been recently investigated by researchers for
dealing with signal processing and particularly with automatic speech recognition. Both
static and dynamic networks have been proposed and experimental results already show
that neural networks represent an effective alternative to classical pattern recognition
methods in several applications. The Multi-Layered Neural Networks (MLN) trained with
Back-Propagation (BP) are probably the most used as static networks [1]. A dynamical
behavior has been differently added to MLNs thanks to various techniques:

(a) transforming recurrent networks in feedforward ones [2];
(b) introducing feedback connections [3];
(b) adding buffered context at the input [4];
(c) adding buffered context at the input and at the hidden layers [5].

Especially the last approach has given good results in speech recognition experiments
[6]. All these new models are inherently limited in their representation of the past to a
fixed period of time.

In this paper, a simple DMLNs (Dynamic Multi-Layered Network) is considered in
which supervision is executed without considering a static input [7]. Instead of waiting for
a fixed point, a learning algorithm is used in which the output supervision is done during
the evolution of the activations. The learning environment is defined by a sequence of
frames representing the natural time evolution of speech signals. The dynamic model
considered is discrete instead of continuous and its transitions occur when a new frame is
applied at the input. 

The class of DMLNs utilized in this experiment is a simple one in which dynamic
neurons, with feedback connections to themselves, have only incoming connections from
the input layer.

METHOD

Instead of using classical "short-term" analysis approaches, like FFT, LPC or
CEPSTRUM based filter bank, a physiologically-based joint synchrony/mean-rate
Auditory Model (AM) of speech processing, proposed by S. Seneff [8], is considered as
Digital Signal Processing front-end. Advantages of using an Auditory Model (AM) for
speech recognition have been demonstrated in many contexts [9],[10].

A vector of 40+40 spectral-like parameters, representing the "mean rate"  and the



"synchronous" response of auditory neurons [8], is presented to the network each 2 ms,
both during the learning and the testing phase. A block-diagram of the proposed AM is
shown in Fig 1, while an example of the application of the AM DSP to the English
sentence "Susan can’t" (last consonants are omitted) is given in Fig. 2, in both "clean" and
"noisy" speech condition [11]. The effectiveness of using this model is quite evident in Fig
2, observing the low frequency components of the two AM sonogram-like plots illustrated
in  (a) and (b), relatively to both "clean" (left) and "noisy" (right) speech.

Fig.1. Block diagram of the joint synchrony/mean-rate auditory speech processing scheme.

Input stimuli are semi-automatically segmented by the use of a Multi-Level
Segmentation (MLS) interactive algorithm [12] working on auditory model parameters. 
Advantages of using auditory models vs classical "short-term" analysis approaches for
automatic speech segmentation have already been shown in litterature, especially in
adverse conditions [11]. Various segmentation hypotheses are given by the MLS algorithm
in form of a tree called "dendrogram" upon which the final segmentation is, up to now,
manually extracted.. A graphic example of the output produced by the application of this
algorithm to the same English sentence considered in Fig. 2 is illustrated in Fig. 3. As
illustrated in Fig 3b, the same algorithm, applied to a "FFT-based spectrogram" instead of
an "AM-based" one (Fig 3a), produces a more confusable segmentation "dendrogram",
from which the final target segmentation is much more difficult to extract.

input signal

40 - Channels
Critical Band
Filter Bank

Hair Cell
Synapse

Model

Envelope
Detector

Synchrony
Detector

Basilar Membrane Response

Firing Probability

Synchrony SpectrumEnvelope Spectrum



Fig. 2. "Auditory spectrogram". Envelope (b) and synchrony (c) outputs refer to the application of the joint
synchrony/mean-rate auditory front-end to the English sentence "Susan can’t" (last two consonants are
omitted) spoken by a female speaker, both in "clean" (left) and "noisy" (right) condition.

As for supervision, during the learning phase, not only the knowledge of the stimulus
identity is available, but also its fine segmentation characteristics.

Learning is organized within an isolated word recognition framework, and the
network should output the right answer after presenting it each unknown stimulus. A
dynamic recurrent neural network with local feedback connections, trained by EBPS [7],
was used to discriminate input speech stimuli. In Fig 4 the structure of a generic Recurrent
Network is shown, while in Fig 5 the mathematical framework of the recognition and the
learning phase within the Extended Back Propagation for Sequences (EBPS) [7] theory is
summarized.



Fig. 3. Comparison of "dendrograms" produced by the àpplication of the MLS algorithm to the English noisy
sentence "Susan ca(n't)" (last two consonants are omitted), using AM parameters (a) and FFT parameters (b).

Fig. 4. Structure of a generic Recurrent Neural Network (RNN).
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Fig. 5. Mathematical framework of EBPS (Extended Back Propagation for Sequence) learning algorithm.
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EXPERIMENTAL SETTING

The experiment described in this paper regards the automatic speaker independent
recognition of the so called Italian I-set: /bi/, /tSi/, /di/, /dZi/, /i/,  /pi/, /ti/, /vi/ plus other
two i-like stimuli /Li/, /si/  (see SAMPA transcription [13]).

Speech signal is sampled at 16kHz, in a quiet office room, analyzed with a joint
synchrony/mean-rate auditory-based signal processing [8] and successively segmented
using a Multi-Level segmentation algorithm [12]. Fig 6 illustrated the computational
environment in which all these steps are developed and implemented .

Fig. 6. Experimental Environment.
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Speech data-base is made up of 7 male speakers characterized by 5 repetitions, for a
total of 350 stimuli. Circularly one speaker is tested using the remaining 6 for learning.

The dynamic network utilized in this experiment has a MLN architecture in which
both static and dynamic neurons cooperate. In particular a very simple DMLN structure is
used, in which dynamic neurons, with a 4-delay feedbacks to themselves, have only
incoming connections from the input layer. DMLN architecture is illustrated in Fig. 7
where also the structure of a dynamic neuron is drawn. 80 static neurons build the input
level. They receive, frame by frame the output of the auditory front-end. 20 dynamic
neurons with a 4-delay dynamic constitute the hidden layer and 10 static neurons, one for
each phonetic stimulus, are considered at the output level.

Fig. 7. Structure of the used Dynamic Multi-Layered Network and of a generic dynamic neuron.

Learning supervision is forced only at the penultimate frame of target phonetic
stimuli as illustrated in Fig. 8 for the input stimulus /tSi/. This is obviously the worst
situation in which all information given by formant transitions towards vowel /i/ is lost
and only inplicit consonant characteristics are considered. In other words, considering
plosives as an example, only burst information contributes to the final discrimination. 
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Fig. 8. Illustration of the learning supervision strategy. Only the penultimate frame of the target consonant is
considered for supervision.

RESULTS

Given the low number of speakers results are given mediating 6 different
experimental sets. Circularly one speaker is used as the test speaker, while the remaining 6
are used for training the DMLN. In Table I, all the different recognition error rates and
the global mean rate are illustrated. Two speaker were particularly difficult to recognize,
achieving only around 50% correct recognition rate, while all the others are rather good.
The best speaker achieves 80% correct recognition rate. These results, given the effective
difficulty of this task, are quite acceptable, but more experiments need to be exploited.

/tS/ /i/

| | | | | | | | | | | | X | | | | | | | | | | | | | | | | | | | |
2ms frame-rate

single supervision frame



Tab. I.  Recognition error rates for all speakers (remaining 6 speakers are used for learning).

FUTURE TRENDS

This work constitutes the base line, for other interesting experiments which are going
to be developed. The Auditory Model DSP can obviously be enhanched and modified,
while the Multi-Level segmentation algorithm can become completely automatic.
Moreover the learning supervision strategy can be improved on behalf of more effective
computational power. Another interesting field of research is represented by the following.
Instead of learning by examples everything, a novel unified approach for integrating
explicit knowledge and learning by examples in recurrent networks has been studied and
successfully applied in ASR related problems [14]. In those experiments, characterized by
isolated-word recognition tasks, lexical knowledge regarding the input words was injected
into the recurrent network structure. The explicit knowledge is represented by automaton
rules, which are directly injected into the connections of a network. This can be
accomplished by using techniques based on linear programming instead of learning from
random initial weights. Learning is conceived as a refinement process and is mainly
responsible of uncertain information management. As well as lexical knowledge, explicit
phonetic knowledge can be  injected in the recurrent network architecture in order to
facilitate the discrimination of phonetic stimuli.  Moreover, with this structure, recognition
can be accomplished not only in an isolated-word recognition framework but also in a
continuous-speech recognition one.

 Speaker Recognition
     Error 

  MM 22%
  GF 32%
  PT 36%
  SR 48%
  BC 48%
  EP 36%
  MR 27%

 MEAN 35.6%
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