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Abstract
We describe a conversational system for child-robot interac-
tion built with an event-based integration approach using the
Nao robot platform with the Urbi middleware within the ALIZ-
E project. Our integrated system includes components for the
recognition, interpretation and generation of speech and ges-
tures, dialogue management and user modeling. We describe
our approach to processing spoken input and output and high-
light some practical implementation issues. We also present
preliminary results from experiments where young Italian users
interacted with the system.

Index Terms: human-robot interaction, integration, Nao, Urbi,
italian children speech recognition, italian speech synthesis,
voice activity detection, sound source localization, dialogue
management, natural language generation, non-verbal behavior
generation.

1. Introduction
Children are keen users of new technologies. And new tech-
nologies can provide interesting opportunities to enrich chil-
dren’s experience, for example for educational and therapeutic
purposes [1]. Since children are not small adults, it is necessary
to research their specific needs and develop systems that address
these needs [2], [3]. To this end we are building a conversa-
tional system for child-robot interaction in the ALIZ-E project
[4], a multi-partner consortium focussed on the design of long-
term, adaptive social interaction between robots and child users
in real-world settings. The goal of the ALIZ-E project is to de-
velop embodied cognitive robots for believable any-depth affec-
tive interaction with young users over an extended and possibly
discontinuous period.

The development of a conversational human-robot interac-
tion system involves the integration of potentially many compo-
nents and ensuring proper interaction and synchronization be-
tween them. While most work in spoken dialogue system de-
velopment is based on pipeline architectures, there are notable
exceptions such as [5, 6], which execute system components in
parallel (weakly-coupled or tightly-coupled architectures). We
presented our event-based approach to system integration in [7]

and described the components constituting the first version of
our system. The current paper is based on the next version.
We highlight some practical issues concerning spoken language
processing that arise from the context and purpose of use of the
robot, and motivate the employed technologies.

Our system uses the Nao robot (Fig.1) and we implemented
three game-like activities that a child can undertake with it:

- quiz: the child and the robot ask each other series of multiple-
choice quiz questions from various domains, and provide
evaluation feedback;

- imitation: either the child or the robot presents a sequence of
simple arm poses that the other tries to memorize and imitate;

- dance: the robot teaches the child a sequence of dance moves

Figure 1: The Nao robot in the measurement setup in a sound
lab at VUB (top left) and playing the Quiz game (top right),
Imitation game (bottom left), and Dance game (bottom right).

In Section 2 we give an overview of the integrated system.
In Sections 3–6 we focus on the processing of spoken input and
output. We describe our approach and highlight some practical
implementation issues. We point out changes from the previous
version of the system and explain the reasons that lead to them.
In Section 7 we explain our event-based approach to system
integration on concrete examples. In Section 8 we present pre-
liminary evaluation results using data collected in experiments



with Italian children. In Section 9 we conclude and present an
outlook.

2. The Integrated System
Fig. 2 depicts the components of the system. For their integra-
tion we use the Urbi middleware [8] (cf. Section 7 for details).
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Figure 2: The components of the integrated system. Filled
boxes indicate components implemented in Java, double-line
boxes C/C++, and plain boxes UrbiScript. The TTS compo-
nent with the marble-filled box is either the Acapela TTS on the
Nao or the Mary TTS implemented in Java.

The Voice Activity Detection (VAD), Sound Source Local-
ization (SSL) and Audio Front-End (AFE) components perform
speech signal detection and capture (Section 3). The speech in-
put is then processed by Automatic Speech Recognition (ASR)
and Natural Language Understanding (NLU) (Section 4). Vi-
sual input is processed by the Gesture recognition and Un-
derstanding component (GRU). For example, to recognize the
poses in the imitation game it uses face detection and either mo-
tion detection or various optical flow algorithms. Speech and
gesture interpretations go to the Dialogue Manager (DM) that
bears primary responsibility for controlling the robot’s conver-
sational behaviour as well as the progress of the game at hand
(Section 5). It maintains a system state representation and se-
lects the next system action. How exactly this is done depends
on the game. For example, selecting the next suitable question
in the quiz game is done by a separate Game Move Genera-
tor (GMG) component that also accesses the Quiz Database of
questions and answers. User-specific information (e.g., name,
age) and interaction history (e.g., games played, achieved per-
formance) are kept in the User Model, which also receives up-
dates from the DM. Spoken output is produced by the Natu-
ral Language Generation (NLG) and Text-To-Speech Synthesis
(TTS) components (Section 6). The Non-verbal Behavior Plan-
ning (NVBP) and Motor Control (MC) components produce
arm gestures and head&body poses. Besides the game-specific
moves and poses in the imitation and dance games, static key
poses are produced to display emotions, namely anger, sadness,
fear, happiness, excitement and pride [9].

The following sections present in more detail the compo-
nents for spoken language input and output processing.

3. Speech Signal Detection and Capture
Ultimately the children and the robot should move around
freely, in a standard environment with unpredictable back-
ground noise. No particular instrumentation, such as a head-
mounted michrophone, should be required. The following com-
ponents are developed towards this goal.

3.1. Audio Front End (AFE)

The AFE component captures the speech signal from the micro-
phones, makes preliminary preprocessing such as sample rate
conversion, and sends the audio buffers to the VAD component.

3.2. Voice Activity Detection (VAD)

The VAD module is important to facilitate the spoken inter-
action. It allows the robot to detect that dynamically varying
sound sources which could be of interest for further analysis
(such as e.g. human speech) are active. Our studies indicate
that most VAD algorithms described in the literature are greatly
affected by the type of background noise. Motivated by the fact
that the Nao robot will interact within an environment of un-
known background noise conditions, we have examined the per-
formance of different VAD algorithms for different background
noise types that exhibit certain characteristics and proposed a
robust energy based VAD algorithm. This VAD algorithm uses
the feature of smoothed energy contained in the frequency re-
gion of interest and can be configured for different background
noise types. We showed that it outperforms conventional spec-
trum based VADs under certain noise conditions and for certain
configurations [10]. The VAD output is communicated to other
components via the Urbi event emission functionality.

3.3. Sound Source Localization (SSL)

The ability of the robot to localize the direction where a sound
is coming from is important for context-awareness. Robot audi-
tion systems often utilize microphone arrays consisting of many
microphones to increase the SSL performance. The time delay
on arrival (TDOA) is usually estimated under the assumption
that the microphone array is located in free space. These condi-
tions are not fulfilled in real-world robots such as Nao, where a
small number of microphones are mounted on the robot’s head
cover. Scattering of the sound wave along the shape of the robot
has a significant influence on the conventional TDOA estima-
tion. In order to address this, we implemented a Generalized
Cross-Correlation (GCC) based SSL method which utilizes a
set of pre-measured TDOAs, followed by parabolic interpola-
tion [11]. Moreover, our experiments highlight the importance
of speech denoising for performing SSL under highly noisy
conditions. The effect of different denoising techniques as GCC
weighting functions has been studied and their performance has
been assessed under internal and ambient noise types. Finally,
we have demonstrated that taking Nao’s microphone frequency
responses into account in the GCC weighting function can con-
siderably improve the SSL accuracy [12].

4. Spoken Input Processing
The acoustic and linguistic characteristics of child speech dif-
fer widely from those of adult speech, not only at the frequency
range level but also in the production modalities [13]. For exam-
ple, there are more dysfluences not only in spontaneous speech
but even in read speech. [14] showed that word error rate for
children is normally higher than that for adults even when using



an acoustic model trained on child speech. Developing compo-
nents for robust spoken input processing for children is thus of
crucial importance in ALIZ-E].

4.1. Automatic Speech Recognition (ASR)

The first version of our system used CMU Sphinx-3 [15]. It
has however proven difficult to implement live decoding and
run-time features with it and the Sphinx-3 upstream code is no
longer maintained. We thus switched to the Open-Source Large
Vocabulary CSR Engine Julius [16] as the ASR engine.

4.1.1. Sphinx/Julius comparison

Table 1 provides a comparison of Sphinx-3 and Julius4. The
following points in particular have driven our decision to change
the ASR engine:

- Julius decoder API is very well designed (it made integration
smoother in comparison with Sphinx-3).

- Its system requirements are low (this is important in an inte-
grated system handling several components).

- Language models can be swapped at run-time.

- Configuration is modular.

- Multi-model recognition is possible.

- On-the-fly Input/AM normalisation is available.

Feature Sphinx-3 Julius4

Open Source yes yes
System requirements Computation and

memory intensive
(Each word has its
own HMM)

Low memory require-
ment: <32MB for
work area (<64MB
for 20k-word dicta-
tion with on-memory
3-gram LM)

Decoder API no yes
Decoder binary yes yes
AM formats Sphinx HTK
AM training Sphinx HTK
LM formats ARPA N-gram ARPA N-gram

Finite State Grammar DFA grammar
isolated word
user-defined functions

Configuration Monolithic Modular
Held for the entire ex-
ecution

Run-time swapping
allowed

Parallel Multi-model
recognition

no yes

Confidence scoring yes yes
Integrated VAD yes yes
Input/AM normalisation MLLR MLLR (ext. tools)

VTLN VTLN
MAP CMN

CVN
Input/AM normalisation VTLN
(on-the-fly) CNN

CVN
Output N-best N-best

Word lattice Word lattice
Confusion network

Table 1: Sphinx-3/Julius4 features comparison

With Julius, it has indeed proven very easy to implement the
desired features and to integrate them into the system.

4.1.2. Training of Acoustic Models for Children Speech

The Julius distribution does not include specfic training tools for
acoustic models, however any tool that creates acoustic mod-
els in the Hidden Markov Model Toolkit (HTK) format can be
used. We used the HTK tools [17], following the Voxforge HTK

training for Julius tutorial [18]. Using the same procedure we
trained an Italian adult acoustic model, based on the training
data provided for the EVALITA 2011 Forced Alignment task
[19] (a subset of the CLIPS corpus) and an Italian child acous-
tic model, using the FBK CHILD-IT corpus [20].

Since the system needs to carry out interaction with chil-
dren in Italian, we built a corresponding Julius acoustic model
using ChildIt [20], an Italian children voice corpus that con-
tains almost 10 hours of speech from 171 children, following
the same strategy we have previously adopted in several tests
training and decoding ChildIt with Sphinx and other ASR tools
[21]. We plan to strengthen ASR accuracy by recording an
audio plus transcription corpus, thus resulting in an improved
child voice acoustic model. Also, we plan to apply Speaker
Adaptation techniques, using a small amount of observed data
from individual speakers to improve our speaker-independent
model. Adaptation can be very useful in the ALIZ-E project be-
cause children’s vocal tract lengths can differ a lot. Since each
child will interact several times with the robot we can consider
using data from previous interactions for adapting the models.

4.1.3. LM training

Julius supports N-gram, grammar and isolated word Language
Models (LMs). Also user-defined functions can be imple-
mented for recognition. However its distribution does not in-
clude any tool to create LMs, with the exception of some scripts
to convert a grammar written in a simple language into the De-
terministic Finite Automaton (DFA) format needed by the en-
gine. External tools thus need to be used to create an LM.

Since Julius supports N-gram LMs in ARPA format, we
used the SRI-LM toolkit [22] to train a simple model for recog-
nition of questions in the quiz game, using the Quiz Database
as training material. The model is very simple and limited, but
it should suffice to recognise properly read questions (they are
expected to be from the training set), especially if used in con-
junction with some other, more flexible, model.

The Julius engine distribution also includes tools that al-
low to express a grammar in a simple format and converting
it to the Julius DFA format. That format, however, has very
few constructs for writing a proper grammar by hand and writ-
ing a non-trivial grammar is very hard. Third-party tools exist
to convert an HTK standard lattice format (SLF) to the DFA
format and to optimise the resulting DFA [16]. SLF is not suit-
able to write a grammar by hand, but HTK provides tools that
allow a more convenient representation based on the extended
Backus-Naur Form (EBNF) [17]. We wrote a simple grammar
for quiz answer recognition in the EBNF-based HTK grammar
language. Part of the grammar was automatically derived by in-
cluding the answers from the Quiz Database. Several rules were
added to handle common answers and filler words.

4.2. Natural Language Understanding (NLU)

In order to achieve robustness against ASR errors and incom-
plete or ungrammatical sentences, speech input interpretation
in our system proceeds along two paths: For the recognition
of quiz questions, answer options and answers we use fuzzy
matching of content words contained in the ASR hypothesis
against the entries in the quiz database. Any other speech in-
put is interpreted using our partial parsing approach.

The partial parsing approach works as follows. The N-best
list from ASR is recombined into a compacted lattice before
parsing proper to avoid re-analysing common subsequences.
NLU does not use the word graph from the main decoder di-



rectly because it does not contain the LM scores which are help-
ful to guide parsing. Several heuristics are applied to merge
similar edges or nodes to reduce lattice size and thereby the
parsing effort. The effects of these heuristics on parsing per-
formance and accuracy still have to be measured with real
data. The compacted lattice is then directly analysed by an
agenda-based chart parser, which uses a hand-written compe-
tence grammar based on the Multimodal Combinatory Catego-
rial Grammar framework [23] implemented in OpenCCG [24].
The agenda, together with an appropriate search strategy, allows
to focus parsing on the promising parts of the input, and thus
aims to find the best partial analyses. Currently, the scores from
the speech recognizer are used to guide the search. It is planned
to enhance this by using a statistical model based on the CCG
grammar and on information coming from the dialogue man-
ager to include as well grammatical as real-world information.

5. Dialogue Manager (DM)
The task of the DM is to keep track of the state in which the
interaction is, to integrate the interpretations of the user’s spo-
ken input (or nonverbal actions) w.r.t. this state, and given this
state select the next (communicative) action of the system as a
transition to another state, making progress towards a goal. The
first version of our system used a finite state dialogue model.
However, our pilot experiments showed that children tend to
behave unpredictably [25], and the system therefore needs to be
very flexible. Moreover, different children have very different
interaction styles (e.g., some are shy while other take a lot of
initiative), and the system should be adaptive to this.

Recent years have seen a boom in research in spoken dia-
logue management using probabilistic methods [26, 27, 28, 29]
and optimisation of dialogue policies using reinforcement learn-
ing [30]. We experiment with these methods in the current
version of the system for the quiz and imitation game. Our
DM applies the learning approach developed in [31] and [32],
which extends the state representation of Markov Decision Pro-
cesses with relational representations to enable compact repre-
sentations of large state spaces, and belief states to handle un-
certainty. It uses a hierarchy of reinforcement learning agents
that learn their dialogue policies from a simulated environment
(partially estimated from data). Such policies specify a map-
ping from dialogue states describing situations in the interac-
tion, to (communicative) actions roughly corresponding to dia-
logue acts.

In order to allow for flexibility in cases where a user takes
initiative and strays from the interaction flow expected by the
policy, we developed an approach for flexible hierarchical dia-
logue control which relaxes the top-down execution of subdi-
alogues, by supporting combined hierarchical and graph-based
execution [33]. The interactions become less rigid because it
follows a partially specified hierarchical control, i.e. the user
can navigate across the available sub-dialogues.

It is well known that human conversants adapt various as-
pects of their conversational behavior to each other (cf. [34]
for an overview). It is commonly accepted that also dialogue
systems should adapt to their users. In order to achieve adap-
tivity in dialogue management we developed methods for on-
line learning of policies for flexible interaction. We main-
tain dynamic state spaces that grow over time—during an
interaction—according to the situations raised by the conver-
sants. We extended our hierarchical reinforcement learning al-
gorithm to support these dynamic states. We use our dialogue
policy learning framework to infer the agent’s behavior (or dia-

logue policy) from interactions with the environment.

The DM listens for events from the NLU and GRU com-
ponents. It emits events to either the NLG or TTS component
and to the NVBP component. For the purpose of experimenting
with the overall system without relying on autonomous inter-
pretation of speech and gesture input, and autonomous dialogue
management, we developed a Wizard-of-Oz interface (Fig. 3).
Given some user input to the robot, (e.g. “what is the correct
answer”), the wizard selects the corresponding user dialogue
act such as “Request(CorrectAnswer)”. The DM then selects
and executes the learned action by querying and updating the
GMG and UM components. When the DM runs autonomously,
it passes a dialogue act to the NLG and NVBP components. In
a non-autonomous mode, the dialogue act selected by the DM is
highlighted in the interface for the wizard to aprove or override.
It is possible to switch between autonomous and wizarded DM
at any time during a session with the system.

Figure 3: The Wizard-of-Oz GUI. The highlighted actions are
the DM’s suggestions to the wizard.

6. Spoken Output Processing
The communicative goal selected by the DM as the next sys-
tem action needs to be verbalised and realised by speech, possi-
bly accompanied by suitable non-verbal behaviour (e.g., waving
with a greeting, nodding with positive feedback). To make the
spoken output appealing, especially to children, we aim to avoid
repetitive system output. We also developed a child-like voice
for the robot, consistent with its role of a peer.

6.1. Natural Language Generation (NLG)

The communicative goal specifies the type of dialogue act and
the values of a range of information state variables important for
verbalisation selection. The range of dialogue acts in our sys-
tem covers greetings and introductions, activity-management
moves (e.g., request to play, request to switch roles, request of
user turn, etc.), asking questions (e.g., engagement in a game
or a quiz question), providing game move descriptions and in-
structions, providing information and comments on user’s per-
formance, various types of feedback and clarification requests.
There are currently 60 types of communicative goals. Ver-
balisation is determined by an utterance planner using a set
of graph rewriting rules. The output is either a string that is
passed directly to the TTS, or a logical form that serves as in-
put to a grammar-based lexical realisation component using the
OpenCCG realizer [24] and the same handwritten grammar as
mentioned above for parsing.

Long-term interaction involves series of encounters be-



tween the robot and a given user. In order to foster a sense
of familiarity between them, the robot explicitly acknowledges
and refers to common ground with a given user, thus making it
explicit that it is familiar with the user. Examples of such ver-
balisations include: use of name (e.g., “So, which answer do
you choose, Marco?”), references to previous encounters and
play experiences (e.g., “I am happy to see you again”), refer-
ences to previous performance in an activity (e.g., “You were
again really good at the quiz game today”), reference to famil-
iarity of a question in quiz or a dance move (e.g., “The next
question should be familiar.”), reference to the familiarity of ac-
tivity rules (e.g., “Remember the magical pose?”). Such moves
are accompanied by corresponding nonverbal behaviors, e.g.,
nodding, higher excitement.

It is well known that system output can be annoying and
boring when the verbalisation of dialogue moves is repetitive.
Since this could negatively influence engagement of children,
we have invested considerable effort to implement a large range
of verbal output variation. Selection among variants is either
random or controlled by selectional criteria. Among the selec-
tional criteria are various contextual parameters (e.g., the infor-
mation whether the current user interacts with the system for
the first time or it is a subsequent encounter, whether they have
already played the current game or it is new, whether the user’s
previous performance was good or not) as well as characteris-
tics of the content to be conveyed (e.g., whether a given quiz
question was already asked or not, how many answer options
a quiz question has and whether they are short or long, etc.).
The resulting number of alternative verbalisations in the current
implementation varies greatly between different dialogue acts,
ranging from just a single verbalisation (for dialogue acts that
only appear once, such as name introduction or the explanation
of a game) to thousands of variants. This suffices to ensure that
the users will not be exposed to repetitive system output.

A problem which often affects spoken dialogue system out-
put is the lack of naturalness due to incorrect or ambiguous
prosody of the generated sentence. We experiment with mod-
ifications of the spoken output prosody using the support for
controling the prosody of TTS voices with symbolic markup of
speech rate, pitch and contour. So far, two prosody modifica-
tions have been implemented:

- Prosodic prominence modification (stress) on words that re-
alize the focus of a sentence: The NLG component labels
focus words. In the current implementation, all occurrences
of ordinal modifiers (e.g., ‘seconda’ in “ecco la seconda do-
manda” (here is the second question)) are labeled as focus,
and thus to be stressed, because they denote a distinguish-
ing property that delimits one of a set of possible alternatives
in the sense of [35]. The TTS component then modifies the
prosodic realization decreasing the speech rate and raising the
pitch contour on the words that realize the focus.

- Emotional prosody modification according to the emotional
state of the robot: Currently the dialogue manager de-
cides when the system output should be rendered with (non-
neutral) emotional coloring, either “sadly” or “happily”. The
TTS component implements a function sayWithEmotion
that ensures the corresponding realization: increasing the
speech rate and the pitch contour in the happy case, and de-
creasing them in the sad case.

6.2. Text-To-Speech Synthesis (TTS)

The commercial Acapela TTS system [36] is available by de-
fault on the Nao. However, the ALIZ-E project requires a more

customizable and flexible TTS system: first, to support prosody
modifications like those mentioned above to relate utterances
to context and to express emotions vocally; second, to be able
to use a child-like voice, because synthesized speech triggers
social identification processes.

In order to achieve these objectives we chose the open
source Mary TTS platform [37]. The advantage of using Mary
TTS is that it supports state of the art technology in the field of
HMM-synthesis [38], and enables us to experiment with the ma-
nipulation of para-verbal parameters (e.g. pitch shape, speech
rate, voice intensity, pause durations) for the purpose of expres-
sive speech synthesis, and the voice quality and timbre modifi-
cations algorithms [39] useful to to convert an adult TTS voice
into a child like voice.

Mary TTS already supports many languages and it comes
with a toolkit for quickly adding support for new languages and
for building HMM-based synthesis voices. In order to develop
a new Italian voice for Mary TTS, we first ported some of the
existing Italian Festival TTS modules [40]: the basic NLP mod-
ules for Italian (Lexicon, Letter-To-Sound rules, Part Of Speech
tagger) have already been ported into Mary TTS. A first test
voice was created using the Wikipedia optimal text selection
procedure and voice building procedure provided by Mary TTS.
Informal listening tests yielded positive judgments.

7. Event-Based Component Integration
Due to the limited processing power and memory of the Nao’s
on-board computer, many of the system components must run
on one or more PCs in the network. Moreover, we have pre-
existing software written in different programming languages
and running on different operating systems; therefore, a com-
ponent integration framework is required.

The open source Urbi SDK [8] was chosen as the middle-
ware in the ALIZ-E project. It aims at providing a universal
programming environment orchestrating complex components.
As a client-server architecture where the server is running on
the robot, it is possible to integrate remote components writ-
ten in C/C++ or Java with components that run directly on the
robot. Urbi comes with a dedicated language, UrbiScript, which
provides a number of interesting paradigms, for example for
event-based and parallel programming, and can access and con-
trol the sensors and actuators of the Nao. Similar to other in-
teractive systems, we had the choice between different compo-
nent integration paradigms; the most popular ones appear to be
publish-subscribe messaging [41] and blackboard [42] architec-
tures. Essential requirements include proper encapsulation of
components to ensure maintainability of the software; the flexi-
ble rearrangement of information flow; and a notification mech-
anism allowing a component to initiate the flow of information.

Urbi’s event objects provide a suitable and robust mecha-
nism for implementing a messaging paradigm: an Urbi event
can carry arbitrary values as a ‘payload’. Components can trig-
ger events whenever new data is available, a certain processing
stage has been reached, etc. A controller script, written in Ur-
biScript, implements event handlers which pass the information
on to the appropriate components. The advantage of this ap-
proach is that all event handlers for a given instantiation of the
system are maintained in a single file; beyond mere message
passing, they can also provide additional functionality such as
centralized logging.

One of the main problems in a robotic environment is how
to deal with the need of having components that either (a) can
access to low-level hardware details, (b) perform heavy compu-



tations, and typically run on different, more powerful machines,
(c) should be coordinated concurrently, (d) should react to (typ-
ically asynchronous) events.

Languages such as C/C++ can suit low-level and heavy
computational tasks well, but it can be tedious to manage
concurrency, network communication and event handling with
them. The Urbi environment provides the UrbiScript language
which can orchestrate complex organisations of components
named UObjects in highly concurrent settings. It is relatively
easy to make a C/C++/Java program accessible as a UObject.
Basically one needs to wrap the upstream program into a C++
(or Java) class inheriting from Urbi::UObject, then bind in ur-
biscript the methods that should be accessible from there. Even-
tually, one needs to define events and how to handle methods
concurrently. We explain how this done using as example the
integration of the ASR and TTS components into the system.

7.1. The ASR Component Integration

ASR is provided as an API whose functions can be accessed by
other components (e.g., NLU). When ASR output is available,
an event is launched and the result is provided as a payload,
so that any component that needs this information can access
it. The ASR component is basically made of two modules: a
configuration structure (that holds data for AM and LM) and
a main recognition loop function (also called “Julius stream”).
The latter contains an internal VAD and outputs second pass
recognition result as an NBest list. The principal methods of
this component are: load/free/switch configuration; start/stop
main recognition loop. Fig. 4 shows a scheme of function calls
and data exchange among ASR, DM and NLU components.

Figure 4: ASR communications through URBIscript.

Both speech recognition triggering and output notification
are implemented by UrbiScript events. In particular, the N-best
result is the payload carried to NLU component. We needed to
create an Urbi data structure that could be populated by Julius
C++ UObject output, and accessed by other components (for
example the Java NLU). We implemented an N-Best interface
for feeding the NLU component with ASR output. This data
structure consists of a list of sentences; each of them holds
total (i.e. sentence-wide) acoustic and linguistic probabilities.
(Julius only outputs sentence-level acoustic and linguistic prob-
abilities, and only a generic confidence score for word-level.)

7.2. The TTS Component Integration

We wanted to keep the possibility of using both the Acapela
TTS and Mary TTS. We achieved this by implementing a con-
figuration system able to choose between the different TTS sys-
tems. Acapela TTS is already available on Nao, but we needed
to make Mary TTS available in the Nao/Urbi environment.

Mary TTS is written in Java using the client/server paradigm.
Due to the Nao CPU resources limitations, it has been decided
to run the Mary TTS server on a remote PC while keeping the
Acapela TTS as a built-in system on the Nao Robot. When
Mary TTS produces the audio output it must be played from the
Nao loudspeaker. This is achieved by using a streaming server
based on gstreamer [43]. In order to have a real time interaction,
an RTP [44] (Real-time Transport Protocol) streaming server is
active on Nao. The incoming RTP stream is then connected to
the robot’s loudspeakers trough a gstreamer pipeline.

Although Urbi is able to manage RTP data, we follow the
gstreamer approach, to avoid overloading the Urbi server. This
approach also allows us to choose among many already avail-
able plugins for building audio/video pipelines. To bring Mary
TTS and gstreamer RTP into the Urbi world, we created an
UObject (UMaryTTS) as the principal UObject responsible for
routing the synthesis request (Mary TTS client) and playing the
resulting audio through different output channels. These chan-
nels are represented by the following UObjects:

- UMaryTTSAudioPlayer makes a request to the Mary TTS
server and plays the resulting audio through the PC loud-
speakers (useful for tests without a real robot).

- UMaryTTSRTPPlayer makes a request to the MaryTTS
server and streams the resulting audio through an RTP con-
nection using the efflux library [45].

- UMaryTTSGstreamerPlayer that makes a request to the
MaryTTS server and streams the resulting audio through a
UDP RTP permanent connection using gstreamer-java [43].

While Acapela TTS exposes only the functions
say(pText) and stopTalking(), UMaryTTS also
exposes sayWithEmotion(pText, pEmotion) that
is able to change the global prosody settings according to a
chosen emotion. Moreover UMaryTTS is able to manage the
prosody labels assigned by the NLG component.

8. Experiments and Results
We apply a yearly cycle of specifications-development-
experiments. Experiments with the integrated system with real
users are carried out at the San Raffaele Hospital in Milan in
order to assess the viability of the scenario, evaluate (certain as-
pects of) the system and collect data for further development.
Experiments with the first version of the system were carried
out in March 2011, and some results were discussed in [25].
Experiments with the new version were carried out in Decem-
ber 2011 (pilot) and in April–May 2012.

In these experiments, speech and gesture recognition and
interpretation were fully wizarded (i.e., performed by a human,
cf. Section 5), verbal and non-verbal output production was
autonomous. Dialogue management was wizarded in the first
weeks of the experiment, autonomous afterwards.

19 subjects aged 5–12 years (11 male, 8 female) partici-
pated. Every subject was invited to come three times to play
with the robot. Each session took up to one hour. The chil-
dren interacted on their own with the robot and then completed
questionnaires gathering subjective evaluations. Time permit-
ting, the child could select up to two games to play with Nao
from the available repertoire of dance, imitation and quiz in
each session. The child could stop an interaction at any time.
The wizard could terminate an interaction too, for example due
to technical problems or time constraints. The interactions play-
ing one game with the system varied in length between 10–40



Evaluation Metric Quiz Quiz Imitation
wiz. DM aut. DM aut. DM

Dialogue Completion (%) 0.59 0.88 0.75
System Utterances x Dialogue 58.41 89.91 65.08
User Utterances x Dialogue 24.74 38.96 24.25
System Time x Utt. (secs) 8.13 6.27 8.29
User Time x Utt. (secs) 7.85 8.03 13.47
Autonomous System Actions (%) 0.27 0.94 0.96
Game Fun x Completed Dial. (%) 0.86 0.95 1.0

Table 2: Average results of objective metrics based on 51 di-
alogues for Quiz (27 with wizarded and 24 with autonomous
DM) and 12 dialogues for Imitation with autonomous DM.

minutes. Usually there was time to play about five games with a
child over the three sessions. The total number of games played
was 75. We collected video and separate audio recordings, as
well as system log files. Analysis of this data has just started.

8.1. Objective Metrics

Table 2 gives the results of several objective metrics computed
from the information saved automatically in the system log files
during the quiz and imitation game interactions. We have log
data for 51 quiz and 12 imitation game interactions. DM was
wizarded in the first 27 quiz game interactions, autonomous in
the remaining 24 and in all imitation interactions.

An interaction was counted as completed when it included
the dialogue act Salutation(Closing). On the whole about 25%
of interactions ended in a non-standard way, and thus as “not
completed”. This would typically happen due to a technical
problem, e.g., the system locked up, and thus the interaction had
to be aborted (this happenned more often in the early weeks, due
to a technical problem).

The average number of system and user utterances only
gives a very rough idea, because of big differences in the length
of the interactions. But on the whole, the quiz system with au-
tonomous DM appears more “talkative” than the wizarded one.
The exact nature of this difference is to be analyzed. It is also
worth noting that in all the interactions there are only 7 cases
of the wizard typing some text to be synthesized as system re-
sponse. This means that the available repertoire of dialogue
moves generally sufficed to carry on the interaction, although
we again need to investigate this in more detail. As for user ut-
terances, the log files only register those for which the wizard
entered some interpretation through the interface. There were
utterances which the wizard “ignored”, because they did not re-
ally influence the flow of the interaction. We are in the process
of transcribing all user utterances, and then can evaluate this.

The system and user time per utterance includes both speak-
ing and reaction time. Quiz interactions seem to be faster with
autonomous DM. Imitation is slower than quiz due to the poses.

Before closing an interaction, the system asked the user
whether it was fun playing the game, and we can see that the
children mostly answered this question positively even when
task success is moderate or weak; additional subjective evalua-
tions were gathered through questionnaires and await analysis.

8.2. Spoken Input Interpretation

The data collected in the experiments can now be used for test-
ing and further development of the component technologies.
The ASR and NLU components are one such example.

As mentioned in Section 4.1.3 we built a specific LM for
the questions and answers in the Quiz Database. Table 3 shows

Experiment IDs #Snt #Wrd WCR Ins WER

2011-12-13-pre00 4 22 77.3 31.8 54.5
2011-12-13-pre01 6 82 75.6 31.7 56.1
2011-12-13-pre02 5 40 80.0 17.5 37.5
2012-03-10-0020 7 63 74.6 3.2 28.6
2012-03-17-0021 15 114 90.4 4.4 14.0
2012-03-17-0022 4 49 59.2 8.2 49.0
2012-03-24-0021 12 107 62.6 5.6 43.0
2012-04-21-0026 11 84 67.9 8.3 40.5
Total 64 561 73.8 11.4 37.6

Table 3: Preliminary ASR results on quiz question recognition

the results of ASR applied to 64 utterances (561 words) where
a user poses a quiz question to the robot. On average, we get
74% correct words, 11.5% inserted words and 38% WER.

Taking the ASR hypotheses as input to the NLU, 56 ques-
tions were correctly identified by fuzzy matching against the
quiz database contents (Section 4.2). This is an encourag-
ing first result and further experiments will show whether this
level of ASR+NLU performance suffices to sustain the interac-
tion. Further transcriptions of the experiment data are ongoing,
which will enable more evaluation.

9. Conclusions and Outlook
We presented a human-robot interaction system that recognizes
input and produces output in the form of speech and gestures.
We described the components developed to build the system,
with focus on spoken input recognition and interpretation, spo-
ken output production and dialogue management. The com-
ponents are integrated using an event-based approach imple-
mented in the Urbi middleware. This approach supports inte-
gration of written in different programming languages, running
in parallel, distributed on several computers. The components
exchange information by values carried as ‘payload’ by Urbi
events which they trigger whenever new data is available, a cer-
tain processing stage has been reached, etc. This allows us to
create a flexible processing model.

We discussed some specifics of building a system for chil-
dren about 8–11 years old, and how we address these chal-
lenges. This involves building acoustic and language models
especially for this purpose, developing robust natural language
interpretation, flexible and adaptive dialogue management, var-
ied spoken output production and expressive synthesis with a
child-like voice. The system has been evaluated in experiments
with target users. On the one hand, the experiments confirmed
the viability of our scenario using a system with wizarded input
interpretation. On the other hand, we collected data for further
development. Initial evaluation of the spoken input interpreta-
tion on a small subset of the data yield encouraging results.

The immediate future steps are clear. One the one hand,
more component-level evaluation using the collected data. For
example, to test spoken input recognition and interpretation on
other utterances than users posing quiz questions to the system.
On the other hand, more analysis of the data, for example to
determine areas of improvement for the dialogue manager.
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