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Abstract—This paper describes the development of a voice
controlled child-robot interaction system for the NAO robot
platform within the ALIZ-E project. The ALIZ-E integrated
system includes various components but we mainly concentrate on
describing the Automatic Speech Recognition (ASR) and the Text
To Speech (TTS) synthesis components and their performance.
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I. INTRODUCTION

HE aim of the ALIZ-E' project is to develop embodied

cognitive robots and to study the theory and practice
of believable, any-depth and affective interactions between
children and cognitive robots for an extended and possibly
discontinuous period of time.

Specifically, ALIZ-E is testing robots with children (target
age 8-11), who have metabolic disorders, such as diabetes or
obesity. We aim for the robots to support the children’s well-
being and facilitate therapeutic activities in a hospital setting.
The challenges of Child Robot Interaction (CRI) “in the wild”
are significant with both technical and pragmatic issues to be
faced, since children are not “mini-adults”, and this fact is
very much apparent in the context of CRI. Children bring
an imaginative investment to encounters with robot agents
that is hugely valuable in the exploration of how we can
develop technologies and systems for social interaction. It
is necessary to research their specific needs and to develop
systems that address these needs, as suggested by Narayanan
et al. [1] and Yildirim et al. [2]. Speech is the principal
mode of communication for the child-robot interactions of
the ALI1Z-E project. For this reason, a significant research
and development work has been dedicated to investigate and
develop specific Text To Speech (TTS) and Automatic Speech
Recognition (ASR) systems for the Italian language, to be used
with children involved in the experimental part of the project.

A. The ALIZ-E Integrated System

The AL1Z-E integrated system is a robotic software/harware
environment that implements several game-like activities that
the child user can undertake. One of these activities is the Quiz
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Game, which is a very challenging task with regard to Child-
Robot verbal interaction. The Quiz Game interaction is similar
to the “Who Wants to Be a Millionaire?” game show. The child
and the robot are two players who take turns asking each other
questions. Whoever asks also provides multiple choice replies
for the other player.

From a technical point of view, the software components
of the ALIZ-E Integrated System need to (a) have access to
low-level hardware devices of the Robot, (b) perform heavy
computations, (c) typically run on machines connected to
the Nao, (d) be coordinated concurrently and/or (e) react to
(typically asynchronous) events.

Languages such as C/C++ can suit well low-level and heavy
computational tasks, but it can be difficult and time consuming
to manage concurrency, network communication and event
handling with those programming languages. The URBI envi-
ronment, developed by Aldebaran ALIZ-E project partner, pro-
vides the high level urbiscript scripting language which
can orchestrate complex organizations of low level components
called “UObjects” in highly concurrent settings.

The most interesting issues about the integration of the ASR
and the TTS components into the ALIZ-E system are explained
in Sections II-B and III-A, respectively.

II. CHILDREN SPEECH RECOGNITION

ASR and acoustic analysis of children voices have been
studied extensively by speech technology researchers. Al-
though most of the literature comprise English speakers, in
the recent years also the Italian language has been studied,
and corpora have been collected and made available to the
scientific community.

Lee et al. [3] have investigated spectral acoustic parameters
of children speech as a function of age and gender and
compared them to those of adults. This study has measured
that some parameters converge to adult levels around the age of
12, while most of the acoustic speech characteristics becomes
fully established around age 15.

Another important work on this matter has been carried out
by Potamianos and Narayanan [4], and it is one of the first
efforts to apply algorithms related to automatic recognition of
children’s speech. In addition to anatomical and morphological
differences in the vocal tract geometry with respect to adults,



children have proven to introduce more disfluencies than
adults, not only in spontaneous speech but also in read speech.

These are due to a not yet mature control of articulators
and suprasegmental aspects of speech such as tone, stress,
and prosody. Potamianos and Narayanan [4] studied the age-
dependent variability of speech characteristics, due to devel-
opmental changes, that concurs to worsen ASR results when
applied to children voices. An analysis on age-dependent
scaling in formant frequencies, in particular the first two,
F1 and F2, showed that they change almost linearly with
increasing age. Also, it has proven that for children it is
more difficult to classify patterns based on spectral feature
as there is a high dynamic range for acoustic parameters
values. The study ends with speech recognition tests with
adult acoustic models on children voice inputs. Extensive
experiments, conducted on Connected Digit and Command
Phrase recognition tasks, showed that results get worse as age
decreases. On average, ASR experiments with adult Acoustic
Model tested on children lead to a Word Error Rate that
is 2-5 times worse than recognition of adult AM tested on
adults. In [4], applying Speaker Normalization and Frequency
Warping, an improvement on ASR performance was shown.

Also Gerosa et al. [5] have studied children read speech,
both for Italian and English languages, with the purpose of
analyzing acoustic characteristics related to ASR. In particular,
they focused on the analysis of phone duration, intra-speaker
variability and acoustic space. This work also describe exper-
iments carried out on speech recognition of children voices
in matched (i.e., training and testing on voices of Italian
children aged 7-13) and unmatched conditions (i.e., testing on
children’s speech with models trained on adult speech). It is
important to note, for the benefit of the goals of the ALIZ-E
project, that these tests showed that an acoustic model trained
on children recordings lead to better ASR results for children
inputs than a model trained on adult voices.

In [5] they have also investigated and analyzed the corre-
spondence among vocal tract morphology, speech acoustics
and formant patterns in children and in adults. Their work
confirmed literature results also for the Italian language: for-
mant frequency values of recordings of the ChildIt corpus and
APASCI corpus (the former comprising children voices, the
latter made up with adult speech). What is most important,
with respect to the aims of the ALIZ-E project, is that Gerosa et
al. [5] confirmed that 7-13 years is not an homogeneous group
of speakers; in particular, for male children, the fundamental
frequency and the first three formants abruptly change their
values around the age of 12 years. To cope with variability of
spectral parameters among different age groups, voice adapta-
tion techniques have been tested and proven to be effectively
useful to reduce errors in ASR.

During the last few years, many different Automatic Speech
Recognition frameworks have been developed for research
purposes and, nowadays, various open source automatic speech
recognition toolkits are available to research laboratories.
Systems such as HTK [6], Sonic [7], [8], Sphinx [9], [10],
RWTH [11], Julius [12], Kaldi [13], the more recent ASR
framework Simon [14], and the relatively new system called
Bavieca [15] are a simple and probably the most famous list.

A. Julius ASR

Julius® has been chosen as the ASR decoder for the ALIZ-E
project, mainly because it is designed for real-time decoding
and modularity [12]. Its well-designed decoder API made it
very easy to implement and incorporate speech recognition into
the ALIZ-E integrated system. The core engine is a C library
with very low system requirements. High-speed decoding is
achieved with a small memory footprint. It is also possible
to swap language models at run-time. Finally, Julius supports
several AM normalization algorithms, including Vocal Tract
Length Normalization (VTLN). For these reasons, Julius is
particularly suitable for the ALIZ-E integrated system, which
needs to handle several components in real-time. Its configura-
tion is modular (i.e., each configuration file can embed another
one covering only one particular aspect of the configuration).

Julius also integrates a Voice Activity Detector (VAD) based
on Gaussian Mixture Models and Energy. It is very useful
since it allows to avoid unnecessary coding and transmission
from the ASR component. It also permits to prevent the ASR
system to spot false positive results (such as words that may
come from speech recognition of noise events).

B. ASR Component

In the ALIZ-E integrated system, ASR is provided as an
urbiscript component API, whose functions can be ac-
cessed by other components (e.g., a Dialogue Manager). When
an ASR output result is available, an event is launched and the
result is provided as a payload, so that every components that
needs this information can access it.

The ASR component basically consists of two modules.
The first is a configuration structure (that holds data for
Acoustic and Language Models) and a main recognition loop
function (also called “Julius stream”). The second contains an
internal VAD and outputs the recognition result. The principal
methods of this component are: load/free/switch configuration;
start/stop main recognition loop.

A diagram that describes function call and data exchange
among spoken interaction components in the ALIZ-E system
can be seen in Figure 1. In the Figure, Dialogue Manager
(DM) and Natural Language Understanding (NLU) are two
components that are connected with the ASR module. The
former can specify an ASR configuration and decides when
to start/stop the recognition loop. The latter takes as input the
words recognized and it is responsible for interpreting them.

Julius can express its output as nbest lists or word lattices.
The former is the list of n most likely sentences recognized
by the ASR system. The latter, also called “Word Graph” in
Julius terminology, is an acyclic ordered graph, in which nodes
are words and edges are transition probabilities, weighted by
the acoustic and language model probabilities.

A Word Graph is a more powerful representation than
nbest lists for Spoken Language Understanding (SLU) since
lattices provide a larger set of hypotheses and a more accurate
representation of the hypothesis space. Both the nbest list

2Open-Source Large Vocabulary Continuous Speech Recognition Engine
Julius: http://julius.sourceforge.jp/enindex.php
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Fig. 1. ASR communications through urbiscript.

and the lattice structures have been implemented in the Julius
C++/URBI module, exposing most of the original Julius data
structure to urbiscript.

C. Acoustic Model

The Acoustic Model (AM) for Italian children ASR has been
created with the following corpora.

e The Italian FBK Childlt Corpus [5]. The corpus is
composed of Italian children voices, counting almost
10 hours of speech from 171 different children; Audio
prompts consists of adults interviewing children about
his/her preferred books, TV shows, hobbies, sports, etc.
The audio recordings have performed using a Shure
SM10A head-worn mic at 48 kHz and down-sampled
at 16 kHz, 16 bit linear.

e A “read speech” corpus collected within the ALIZ-E
project. It counts more than 10 hours of children speech
from a total of 96 young speakers, aged 6-14.

Since the Julius distribution does not include specific tools
for AM training, the HTK tools [6] have been used for this
task. Also a procedure to build multi-gaussian AM has been
implemented. More details on the AM training procedure can
be found in the work of Paci et al. [16].

D. Language Model

Julius supports N-gram, grammar and isolated word Lan-
guage Models (LM), although its distribution does not include
any tool to create them. An external program must be used to
create an LM.

The SRILM toolkit [17] has been used to train a 4-gram
model for question recognition of the Quiz Game ALIZ-E
scenario. The Quiz questions and answers database has been
used as training material for a “question recognition” model.
Also a simple grammar model for Quiz answers has been built,
automatically including the answers in the Quiz database and
then adding rules to handle common answers and filler words.
Details on how the language models have been trained can be
found in the work of Paci et al. [16].

E. Adaptation

As discussed in II, children voices in the age 7-13 years
form an extremely heterogeneous set of spectral features.
This means that the standard Hidden Markov Model (HMM)
approach to ASR lead to poor results. Several works in the
literature of this field suggest to apply adaptation techniques
to cope with this problem.

Through the VTLN technique [6], [18], it is possible to
divide the group of young speakers into more “homogeneous”
groups. Also, since each child will interact several times with
the robot, data from previous interactions can be used to adapt
the models. For these reasons, the VTLN technique has been
proven to be extremely suitable for the aims of ALIZ-E.

The procedure to apply VTLN to ASR has been the follow-
ing: N recognitions, with N different configurations for VTLN
parameters, with N tuned with a grid search experiment, have
been run simultaneously using an AM trained with the ChildIt
corpus. The configuration with the best confidence score is
chosen [16].

F. ASR Results

Preliminary results of the ALIZ-E ASR system for Italian
children voices have been discussed in the work of Paci et
al. [16]. The test set consists of audio collected in a scenario
as close as possible to the real one. For this reason it has
been decided to collect and manually annotate speech data
recorded during Quiz game experiments. The collected audio
data consists of spontaneous speech recordings of children
utterances produced during real interactions with NAO in a
non-autonomous Wizard of Oz modality (i.e., recognition and
understanding of user input are not automatic, but performed
by a human operator). Speech has been annotated in order to
provide a reference text. Also non verbal sounds (such as user’s
“fillers” —laughters, breath, etc.— and Nao’s sounds —speech,
motor noise, etc.—) have been transcribed. This represents a
proper test set, because it consists of audio collected in a
scenario as close as possible to the real one.

Table 1 shows the results of ASR applied to real-case
scenario audio files, where a child poses quiz questions to



TABLE I PRELIMINARY ASR RESULTS ON QUIZ QUESTION

RECOGNITION.

ID Snt  Wrd WCR Sub Del Ins WER

# # % %o %o % o
1 4 22 86.4 13.6 0.0 13.6 27.3
2 6 82 76.8 22.0 1.2 232 46.3
3 5 40 70.0 25.0 5.0 17.5 475
4 7 62 75.8 12.9 11.3 4.8 29.0
5 15 114 93.9 4.4 1.8 5.3 11.4
6 4 49 65.3 30.6 4.1 12.2 46.9
7 12 106 58.5 358 5.7 4.7 46.2
8 11 84 70.2 23.8 6.0 9.5 39.3

Total 64 559 74.6 209 45 10.2 35.6
TABLE II. PRELIMINARY ASR RESULTS ON QUIZ QUESTION
RECOGNITION (VTLN).

ID Snt Wrd WCR Sub  Del Ins WER
# # %o %o %o % %o

4 22 86.4 136 00 227 36.4
6 82 80.5 18.3 12 244 439
5

7

40 72.5 27.5 00 225 50.0
62 79.0 14.5 6.5 1.6 22.6
93.9 4.4 1.8 4.4 10.5
4 49 65.3 26.5 8.2 12.2 46.9
12 106 59.4 340 6.6 4.7 453
11 84 69.0 250 6.0 8.3 39.3
Total 64 559 75.7 202 4.1 10.4 34.7
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the NAO robot. The 4-gram language model described in Sec-
tion II-D and the acoustic model described in Section II-C have
been used, without applying speaker adaptation procedures.
Results of the same setup, but using VTLN techniques are
shown in Table II.

The VTLN technique allows to improve all the metrics with
the exception of the insertion rate (Ins). Comparing results
file by file, VTLN’s WCR is always equal or better than the
baseline, and VTLN’s WER is worse only for files 1 and 3.

Some errors are caused by Out-Of-Vocabulary words (21
errors), produced by false starts, repetitions and misreadings.
13 insertions, which are monosyllabic words, occurred for
unknown reasons. The word “essere” has been spotted by
the ASR system but actually corresponds to the robot talking
sound. Several errors occurred when the system had to recog-
nize sequences of monosyllabic words that are very similar.
Also, in some cases errors originated by a mismatch between
the actual pronunciations and the phonetic dictionary entries.

III. TEXT TO SPEECH SYNTHESIS

It is known that several messages are contained in the speech
signal. Table III shows the main messages and its speech
correlates. Within the ALIZ-E project, the robot has to convey
to the child these messages, encoded by particular speech
patterns.

TABLE III. MESSAGES CONTAINED IN THE SPEECH SIGNAL AND
THEIR MAIN ACOUSTIC CORRELATES.
Message Acoustic correlates

verbal content of the speech
speaker’s identity spectral envelope, voice quality
emotional state of the speaker  voice quality, prosody

focus prosody

spectral envelope

Thus it has been required to develop a speech synthesizer
capable of generating these speech patterns in order to com-

municate to the child those different messages. Moreover, the
NAO robot can also integrate the audio/speech channel with
other media: movements, gestures and blinking lights.

For these reasons it has been decided to adopt the MaryTTS
system [19]. It is also released as an open source project’.

An automatic Text To Speech system (or “engine”) is usually
made up by two components, a front-end and a back-end. The
front-end takes care of performing Natural Language Process-
ing (NLP) tasks. Its three main purposes are the following:

1) to normalize the input text, an operation also called
“tokenization”, (which means, for example, converting
numbers and abbreviations into their written-out words
equivalent),

2) to perform text-to-phoneme (or grapheme-to-phoneme)
conversion (which means the process of assigning pho-
netic transcriptions to words) and

3) to divide and mark the input text into prosodic units,
like phrases, clauses, and sentences.

The output of the front-end is the so called “symbolic lin-
guistic representation”, that is made up by phonetic transcrip-
tions and prosody information. The NLP modules developed
for Italian MaryTTS are described in Section 1.3.1.

The back-end — often referred to as the synthesizer or the
vocoder — takes care of converting the symbolic linguistic
representation into sound.

The Hidden Markov Model (HMM) Speech Synthesis ap-
proach, a declination of Statistical Parametric Synthesis [20],
has been chosen for the task of modelling the voice of
the robot, because it allows to widely modify the produced
acoustic patterns and to provide greater flexibility than other
TTS approaches, such as the Unit Selection technology [21].
In HMM systems, the back-end module needs also to compute
the target prosody (pitch contour, phoneme durations), which
is then imposed on the output speech.

In HMM-based speech synthesis systems, a symbolic repre-
sentation of the speech segments, together with their phonetic
and prosodic context, is extracted from the input text. Such
representation is defined by so called “full context labels”.
In order to generate the speech signal, a Machine Learning
algorithm uses these labels to generate the appropriate control
parameters (usually excitation and spectral parameters) and
then employ them as input for a vocoder. Figure 2 shows a
functional diagram of the synthesis part of a HMM-speech
synthesizer.

A. Integration in the Robotic Environment

A TTS component has been developed for the integrated
system of the ALIZ-E project. This component is a client for
the MaryTTS server.

In order to make NAO a believable robot, it is crucial that
it emits the speech signal from its loudspeakers, located in its
head, but this is not a trivial achievement. In fact, due to the
NAO computational limitations, it has been decided to run the
MaryTTS server on a remote machine, connected to the robot
through a Wi-Fi network.

3https://github.com/marytts/marytts
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Fig. 2. Functional diagram of a HMM-based TTS system.

MaryTTS has been integrated in the urbiscript-

based robotic system in a straightforward man-
ner by means of an URBI UObject, called
“robot.proxy.ALAudioPlayer.playWebStream”, capable of

directly calling the MaryTTS server and playing the speech
signal using a specific http request. Moreover the low-latency
of this process has been granted by the MaryTTS stream
modality, which permits to stream the synthetic speech signal
as soon as the first audio data are produced by the remote
TTS server.

IV. CONCLUSIONS

Investigation in speech technologies is an essential part in
the ALIZ-E project, since verbal interaction plays a central role
in child-robot interactions. Voice controlled robots supporting
hospitalized children need to incorporate adequate speech
comprehension and production tools, which have to be set up
for the Italian language.

The robot is needed to understand the children language,
which itself is a challenging scientific task. Moreover, the
scientific literature for Italian in this matter is poor if compared
to that of the English language.

For these reasons, a particular care has been taken to speech
recognition adaptation techniques and a big effort has been put
to the collection and annotation of children speech data. Both
read sentences (which allow to easily obtain transcriptions)
and spontaneous utterances (taken from real case interactions)
have been collected. In addition, speech data from a listen
and repeat experiment have been recorded. These data will be
published as speech corpora and they will be freely available
to the scientific community.

On the other hand, the robotic verbal output, applied to
interactions with hospitalized children, should convey expres-
sivity and emotions, in order to involve and engage the young
users as much as possible. Finally, stress on particular words
or phrases is crucial for the children to comprehend the most
important educational topics of the interactions. Specific Text
to Speech modules and tools for the Italian language have been
studied and developed.
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