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Abstract
In this paper, we describe the application of two vocoder tech-
niques for an experiment of spectral envelope transformation.
We processed speech data in a neutral standard reading style in
order to reproduce the spectral shapes of two emotional speak-
ing styles: happy and sad. This was achieved by means of con-
version functions which operate in the frequency domain and
are trained with aligned source-target pairs of spectral features.
The first vocoder is based on the source-filter model of speech
production and exploits the Mel Log Spectral Approximation
filter, while the second is the Phase vocoder. Objective distance
measures were calculated in order to evaluate the effectiveness
of the conversion framework in predicting the target spectral
envelopes. Subjective listening tests also provided interesting
elements for the evaluation.
Index Terms: emotional speech, spectral transformation,
GMM, mel-cepstral analysis, phase vocoder, MLSA filter

1. Introduction
The study of emotions in human communication has seen a
growing interest in the recent years. The achievements within
this research field have also been exploited in some applications
for improving human-machine interaction. Examples of these
applications are Automatic Speech Recognition (ASR) and
Text-To-Speech (TTS) synthesis, in which the capability to rec-
ognize and generate emotional behaviors can actually improve
the naturalness of vocal interfaces in man-machine interaction.
Many studies were focused on the characteristics of emotional
and expressive speech production in terms of correlates occur-
ring between acoustic patterns and emotion categories [1, 2].
Two main groups of vocal parameters were considered, related
to prosody and voice quality respectively. Speech rate, inten-
sity and fundamental frequency (F0, F0 range) are among the
most studied prosodic features. Frequency formants, spectral
energy distribution and spectral noise are well known features
belonging to the second category.

With regards to speech synthesis, the algorithms for pro-
cessing emotional speech were mainly focused on the control
of prosody. In our previous investigations [3], we proposed a
framework for emotional speech synthesis that provided a mod-
ule for prosody modeling along with a rule-based module for
voice quality modification. These processing modules were ap-
plied to a diphone synthesiser.

Although the rule-based approach provided good results, it
was not flexible enough to adapt to the sudden variations occur-
ring in speech. For this reason, we decided to adopt a statistical
approach, as it is more suitable for processing both spectral and

prosodic features.
A number of signal processing techniques have recently

been proposed to solve a somewhat similar task known to the
speech community as voice conversion, namely the transforma-
tion of a source speaker voice into the voice of a target speaker,
while preserving the semantic content of the utterances. It was
found that these solutions can also be very effective for emo-
tional speech conversion tasks [4, 5].

Following this trend, our work was aimed at exploiting
spectral conversion techniques to improve the emotional per-
ception of processed speech. Of course this technique could
be applied to any speech signal. For example, it could be used
to convert the speech data of a concatenative TTS system, into
something more expressive. This approach could therefore be
used to overcome the limited control over expressive features
of many state of the art speech synthesizers, which nonetheless
provide high quality and intelligibility.

In our experiment we converted the spectral envelopes of
neutral speech data into the corresponding envelopes of two
emotional targets: happy and sad. Spectral envelopes were cal-
culated exploiting the mel-cepstral analysis [6, 7], because of
its capability for extracting spectral features on the basis of per-
ceptual scales.

The prediction of the target emotional spectral envelope,
starting from the neutral source, was handled by means of
a parametric conversion function which was automatically
trained using a data-driven approach. Thus, a parallel corpus of
neutral and emotional (happy and sad) speech was recorded by
an Italian male speaker. The statistical transformation between
the source and target dataset, was executed by training Gaus-
sian Mixture Models (GMM) [8]. In this technique, a conver-
sion function, defined by means of statistical clustering of neu-
tral spectral envelopes, was modeled using the target emotional
speech data, with the objective of reducing the mean square pre-
diction error.

The predicted “emotional” spectral envelopes were then
used in a vocoder schema in order to effectively modify the
spectral timbre of neutral speech utterances. Many digital signal
processing techniques could be used for high quality spectral
envelope modification, among which we could mention meth-
ods such as STRAIGHT [9], Harmonic plus Noise Model [10],
Phase vocoder [11] and MLSA filter [6]. Two of these vocoders
(Phase Vocoder and MLSA filter) were considered in our exper-
iment.

The paper is organized as follows: the next section de-
scribes the spectral analysis that has been exploited. Section 3
consists of the training process of the conversion function while
the paragraph after describes the integration of the two vocoder
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Figure 1: Signal spectrum (DFT) and Mel-Cepstral spectral en-
velope (M = 26) of a particular frame of speech. x-axis is
in warped frequency scale. Thin line represents the short-term
spectrum (DFT), while bold line represents the mel-cepstral
spectral envelope.

techniques into our system. Sections 5 and 6 explain the data
used in the experiment and how it has been processed. Section
7 reports some results based on objective spectral distance mea-
sures and subjective evaluations and finally Section 8 concludes
the paper.

2. Spectral envelope extraction
Mel-Cepstral analysis [6, 7] represents the spectral envelope
H(ejω) using M + 1 mel-cepstral coefficients c̃(m) as in:

H(z) = exp

M∑
m=0

c̃(m)z̃−m (1)

where z̃ is the warped z domain used to approximate the mel
frequency scale.

In order to compute the mel-cepstral coefficients c̃(m) of
windowed speech frames, the algorithm adopts an optimisa-
tion method that minimises the spectral envelope representation
error directly in the perceptual-relevant mel-cepstral domain.
An example of the spectral envelope obtained from the Mel-
Cepstral analysis of a frame of speech is shown in Figure 1.

In the work described here, the spectral envelope vector xt
corresponds to the vector composed of M + 1 mel-cepstral co-
efficients c̃(m) computed at the speech frame t.

3. Mapping function estimation
The transformation function F(·) is a parametrisation of the
mapping function between coherent pairs of spectral envelope
vectors belonging to acoustic classes of the neutral and emo-
tional datasets respectively.

For the purpose of aligning the corresponding frames be-
tween the source and target utterances a Dynamic Time Warp-
ing (DTW) algorithm [12] has been used. To increase the accu-
racy of this alignment the DTW algorithm uses the phonetic
boundaries information that comes from a forced alignment
procedure (see section 5).

The problem of estimating the transformation function can
be described as: given the source neutral spectral envelope
xt, the transformation function F(·) such that the transformed
spectral envelope y′t = F(xt) has the best correspondence with
the target emotional spectral envelope yt has to be found for all
data in the learning set (t ∈ L). Following the solution pro-
posed by Stylianou et al. [8], the probability distribution of the
neutral acoustical space is modelled with a GMM:

p(xt) =

Q∑
i=1

αiN (xt;µi,Σi) (2)

and the transformation function has the following parametric
form:

y′t = F(xt) =

Q∑
i=1

P (Ci|xt)
[
νi + ΓiΣ

−1
i (xt − µi)

]
(3)

where Q is the total number of GMM components, µi and
Σi

1 are the mean and covariance of the mixture component Ci,
P (Ci|xt) is the conditional probability that xt belongs to the
acoustic class Ci, while νi symbolize the target acoustical space
and Γi stand for the relation between the source and target sets.

The purpose of the training procedure is then to find the
transformation function parameters (αi,µi,Σi,νi,Γi). Fig-
ure 2 shows the functional diagram of this operation.

The spectral envelopes are extracted from both neutral and
emotional speech data, using the Mel-Cepstral analysis de-
scribed in Section 2, and two sets of paired data are obtained
using the DTW algorithm. The GMM model parameters rep-
resenting the neutral acoustical space are then estimated using
the HTK-based Expectation Maximization algorithm [13], and
finally νi and Γi are computed solving an overdetermined sys-
tem of linear equations by means of the Least Squares Method
on the paired data [8].

One drawback of this frame by frame transformation is the
lack of dynamic coherence. Beyond the mel-cepstral coeffi-
cients, their first and second order derivatives (∆ + ∆2) have
also been used in the training procedure so as to add dynamic
information. Results of experiments with and without dynamic
features are compared in Section 7.1.

4. Vocoder techniques
4.1. Phase vocoder based conversion

The Phase vocoder [14], mainly used for operations of pitch
shifting and time stretching, can also be used to modify the tim-
bre of an audio signal. Its implementation is based on the spec-
tral representation of time windowed signal intervals and on the
overlap-add method. Because of this, it is possible to manip-
ulate some attributes of the original audio signal, both in the
frequency and the time domain.

In order to modify the speech timbre, a different shape can
be imposed on the moduli of each short-time Fourier windowed
frames, according to the desired spectral envelopes.

The framework with the FFT-based phase vocoder [11] that
we implemented for this purpose, is shown in Figure 3.

Firstly, the source mel-cepstral vector xt is computed
through the use of mel-cepstral analysis of neutral speech. The
predicted target spectral envelope y′t is then computed using the

1Because of the propriety of cepstral analysis that tends to minimise
correlation between coefficients, diagonal covariance matrices Σi are
used here as approximation of full covariance matrices.



Figure 2: Functional diagram of the learning procedure.

Figure 3: Functional diagram of spectral envelope transforma-
tion system using the phase vocoder technique.

transformation function F(xt) obtained in the training phase.
These mel-cepstral vectors are then used to calculate their spec-
tral envelopes in the FFT domain (Y ′t (f) and Xt(f)), and their
ratio:

R(f) =
Y ′t (f)

Xt(f)
(4)

is used as frequency dependent gain2 applied to the FFT mod-
ulus of the source speech frames in the phase vocoder scheme.
As a consequence, the shape of the predicted target spectral en-
velopes are imposed to the FFT frames, which are then joined
together by the overlap-add method.

4.2. MLSA filter based conversion

Considering that mel-cepstral vectors represent speech spectral
envelopes, they can be used in a source-filter model of speech
production. This simplified framework assumes that the vocal
folds are the source of a spectrally flat sound (the excitation
signal), and the vocal tract acts as a filter to spectrally shape the
various components of speech.

In this scheme the Mel Log Spectral Approximation digital

2R(f) represents the frequency response of the filter needed to
transform the neutral speech timbre into the emotional one. Moreover
R(f) can be computed directly from the mel-cepstral coefficients dif-
ference (y′t − xt) saving some computation load.

Figure 4: Functional diagram of spectral envelope transforma-
tion system using the MLSA filter technique.

filter [6, 7] is used to synthesise speech with a particular spectral
envelope: this technique derives the coefficients of a zero-pole
filter directly from the mel-cepstral coefficients c̃(m).

To convert the original spectral envelope, two MLSA filters,
used in a spectral whitening-reshape scheme, are controlled by
mel-cepstral vectors as shown in the functional diagram of Fig-
ure 4.

The source mel-cepstral spectral envelope xt and the pre-
dicted target vector y′t are obtained in the same way as the phase
vocoder scheme.

The spectral envelope vector xt is used to control the in-
verse MLSA filter in order to whiten the spectrum of the source
speech signal, this is employed as excitation signal for another
MLSA filter controlled by the predicted mel-cepstral vector y′t,
obtaining a speech signal with the predicted spectral envelope.

5. Emotional speech database
In this experiment, speech data were recorded by one Italian
male speaker. In order to train the voice transformation model,
two sets of data were necessary: the source data and the target
one. Source data were extracted from the neutral voice of the
speaker while target data corresponded to the emotional voice
of the same speaker.

As with what concerns the neutral style, the speaker was
asked to use a standard reading style, without any interpretation,
focus or emphasis. In the case of emotional data, he was free to
read the same scripts by simulating the two emotions considered
in the project: happiness and sadness. The corpus consisted of
of 200 sentences, (generally 10-15 words each), extracted from
a big newspaper corpora. These sentences provided adequate
contextual coverage of the Italian phonetic inventory.
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Figure 5: Two examples, taken from two pairs of frames in the test set, of the mel-cepstral spectral envelopes involved in the trans-
formation. Blue bold lines represent the neutral envelope. Red bold dashed lines represent the real affective envelope. Red thin lines
represent the predicted affective envelopes estimated using 16 Gaussian mixture components and respectively the first and second order
derivatives coefficients (dashed lines) or not (solid lines). Left: neutral-to-sad case. Right: neutral-to-happy case. x-axis is in warped
frequency scale.

Recording sessions were held in a silent environment, with
good digital acquisition equipment. Linear PCM files were pro-
duced at 44.1 kHz sampling rate. Post-production included
some manual editing to remove voice artefacts and down sam-
pling at 16 kHz for analysis and synthesis purposes.

A rule based automatic grapheme-to-phoneme processor
was used in order to obtain the phonetic transcriptions of the
scripts. Given the phonetic sequences, we have then applied a
forced alignment tool [15] to detect their boundaries in the cor-
responding waveforms. This tool is based on Hidden Markov
Models (HMMs). For our task 3-5 states (loop-forward) models
were used. At the beginning we used a set of speaker indepen-
dent bootstrap models of the Italian phonemes. These have then
been refined through the adaptation with supervised data of our
speaker.

The whole corpus was split into a training set, used to esti-
mate the parameters of the voice conversion system, and a test
set (unseen data) to measure its performance. We used 180 sen-
tences for training the parameters of the mapping function and
the remaining 20 sentences for evaluation.

6. Speech-timbre conversion experiments
In the present study, the mel-cepstral analysis of order 26 was
performed using the SPTK toolkit [16]. We used fixed length
windows both for mel-cepstral extraction and spectral modifi-
cation. Frame-analysis size and hop size were set respectively
to 40 ms and 10 ms.

The predicted first mel-cepstral coefficient c̃(0), that repre-
sents the energy of the speech frame, was not taken into con-
sideration in both vocoder frameworks. In this way, the same
intensity of the original source signal was maintained in the con-
verted signal. In fact, in this work we were only interested in
the spectral shape of the target envelope, not in the variation of
intensity occurring in the speech datasets.

The transformation function parameters were estimated us-
ing the training part of the database, making experiments with

different numbers of GMM components and with or without dy-
namic coefficients (∆ + ∆2). The resulting models were then
evaluated on the test set (see Section 7.1).

Figure 5 shows an example of the transformation of spec-
tral envelopes involved in the neutral-to-sad (left) and neutral-
to-happy (right) conversion. In these figures the initial distance
between neutral and emotional envelopes is clearly observable.
Moreover, we can note that the predicted envelopes computed
with dynamic features, provide better approximations of the
target “emotional” envelopes than those computed without dy-
namic features.

The final part of this experiment consisted of modifying the
vocal timbre of some neutral test utterances using the spec-
tral envelopes predicted through the voice conversion proce-
dure (neutral-to-sad and neutral-to-happy) and the two vocod-
ing techniques.

7. Evaluation
7.1. Objective evaluation of the transformation function

A good perceptual measure of the distance between two spectral
envelopes xt and yt is the mel-cepstral distance (mcd):

mcd[dB](xt,yt) =

√∫ π

−π

(
20 log10

∣∣∣∣Hxt(e
jω̃)

Hyt
(ejω̃)

∣∣∣∣)2
dω̃

2π
(5)

where ω̃ represents the mel warped angular frequency.
This measure can be computed using the corresponding

mel-cepstral coefficients as:

mcd[dB](xt,yt) =
20

ln(10)

√√√√ M∑
m=1

[c̃xt(m)− c̃yt
(m)]2 (6)

where, as above explained, the first mel-cepstral coefficient
(m = 0) is not taken into consideration in this experiment.
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Figure 6: Prediction error (pe) as a function of the number of
GMM components computed in the test set.

In order to evaluate the spectral envelopes conversion
framework, the original spectral distance (osd) between neu-
tral and emotional data, and the prediction error (pe) obtained
with the samples included in the test set (t ∈ T) were used.

The first value is the average mel-cepstral distance between
the affective spectral envelopes and the neutral ones:

osd =
〈
mcd[dB](yt,xt)

〉
t∈T (7)

whereas the prediction error is the average mel-cepstral distance
between the predicted spectral envelopes and the target ones:

pe =
〈
mcd[dB](yt′,yt)

〉
t∈T (8)

The original spectral distance values are shown in Table 1, while
Figure 6 shows the prediction error resulting from models built
with different numbers of Gaussian components, with or with-
out dynamic features (∆ + ∆2).

Table 1: Original spectral distance (osd) computed in the test
set.

Original Spectral Distance [dB]
Neutral-to-Sad Neutral-to-Happy

10.87 9.34

It is interesting to note that although the original spec-
tral distance (Table 1) is higher for the neutral-to-sad case
(10.87 dB) than for the neutral-to-happy one (9.34 dB), the
neutral-to-sad conversion provides lower prediction errors than
the neutral-to-happy one (see Figure 6).

This probably derives from the different cues of the two
emotions. Sadness has a lower speech rate and more static char-
acteristics compared to happiness. Low speech rate also implies
a larger amount of speech data when using the same sentences.
This could improve the accuracy of the statistical model. Fur-
thermore, sadness probably produces more static spectral en-
velope vector distributions with less acoustic variability with
respect to happiness, and it is then easily modelled through a
transformation that involves means and variances.

With reference to Figure 6, we can also notice the over-
fitting phenomenon: increasing the number of GMM compo-
nents, a minimum in the prediction error is reached, but after

this point performances get worse. This is due to the fact that
the models built with a large number of Gaussian components
are more complex, and they have too many degrees of free-
dom (the transformation function parameters), in relation to the
amount of data available in the learning set. As a consequence,
the model built from the training data provides poor predictive
performances when applied to the test set, loosing its general-
ization characteristics.

Finally, these results show that the inclusion of dynamic
features, reduces the prediction errors (for Q < 64).

To sum up, the best result in the test set is obtained includ-
ing the dynamic features and using 16 Gaussian components,
and this model was used to produce the sentences for the sub-
jective listening test.

7.2. Subjective evaluation

Beyond objective distance measures, we decided to collect sub-
jective ratings in order to verify whether the perception of the
synthesised stimuli was coherent with the intended spectral
transformations. We set-up an evaluation schema aimed at as-
sessing the naturalness and the emotional characteristics of the
timbre of the synthesised phrases. In particular some subjects
had to judge the style of each sample by selecting an option
among five labels: sad, slightly sad, neutral, slightly happy and
happy. As for naturalness we used a 5 points MOS scale with
semantic labels: 5=Excellent, 4=Good, 3=Fair, 2=Poor, 1=Very
poor.

The evaluation data set consisted of 8 samples extracted
from 5 different groups. The first group included neutral ut-
terances selected from the original recordings of the speaker.
The other groups included the phrases in two emotional speak-
ing styles and synthesised with the two vocoders considered:
happy MLSA, happy Phase Vocoder, sad MLSA and sad Phase
Vocoder respectively.

The test was executed by 30 subjects through an interactive
web interface. Some instructions were provided in the home
page. In particular, we suggested using the headphones or, al-
ternatively, to do the listening session in a quiet environment.
Samples were proposed in random order and subjects could play
each stimulus as many times as needed and re-listen to the items
previously evaluated.

Results, reported in Figure 7 (top), show that the degree of
naturalness for the synthesised phrases is not so distant from the
reference cases (neutral), which on average have been judged
as “Good”. There are no significant differences between the
MLSA filter and the Phase vocoder techniques for the Happy
style, while the second one is slightly better for sad transfor-
mations. This means that the two vocoder techniques do not
introduce perceivable artifacts and are actually suitable for this
kind of speech conversion.

Regarding the evaluation of the emotional style, as shown
in Figure 7 (bottom), the processing neutral-to-sad seems to be
more effective than the neutral-to-happy for which the average
values of the ratings are similar. We could hypothesize that the
combination of spectral and prosodic features, (which were not
considered in this conversion experiment), could lead to better
results in terms of emotion perception. The MLSA technique
was judged better than the phase vocoder when used to render
the sad emotional style. This is probably due to the capability
of this filter to model more accurately the spectral energy dis-
tribution, and consequently low frequency patterns which are
likely to be an important feature in the sad speaking style. In
the case of neutral-to-happy conversions the two techniques re-
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Figure 7: Subjective evaluation results. Top: Naturalness as-
sessment. Bottom: Emotional perception assessment.

ceived similar evaluations.

8. Conclusions
In this paper, a framework for timbre conversion from neutral to
emotional was presented. This transformation was substantially
a signal post processing applied to speech waveforms recorded
by a male speaker. In order to describe the modifications be-
tween the two spectral acoustic spaces, a statistical conversion
function was trained. After obtaining the transformed spectrum,
these changes were applied to speech signals with two different
vocoding techniques. From both objective measures and sub-
jective assessments we obtained encouraging results.

The objective evaluations showed that the transformation
system performed successfully and on average it yielded to a
reduction of the spectral distance between transformed neutral
speech and target emotional speech. This means that it provided
a conversion in the right direction. From these measurements,
therefore, we noticed the effectiveness in bridging the gap be-
tween neutral and emotional speech, especially when the target
emotional style was sad rather than happy.

The subjective assessment was generally coherent with the
objective measures and the neutral-to-sad conversion was often
positively recognised. In this particular conversion, MLSA filter
was perceived slightly better than the Phase vocoder. In the
neutral-to-happy case, the difference between the two vocoders
is not so significant to suggest a preference for one of them.

Speech naturalness was tested along with the emotion per-
ception. Most of the listeners agreed that, even though the
neutral speech was recognised as being more natural, the con-
verted speech using different vocoders and rendering different

emotions, was not perceived so dissimilar. This confirms that
the conversion performed well and no unwanted artifacts were
added.
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